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Abstract

Cognitive Diagnostic Models (CDMs) are popular discrete latent variable models in ed-
ucational and psychological measurement. While existing CDMs mainly focus on binary or
categorical responses, there is a growing need to extend them to encompass a wider range of
response types, including but not limited to continuous and count-valued responses. Mean-
while, incorporating higher-order latent structures has become crucial for gaining deeper in-
sights into cognitive processes. We propose a general modeling framework for higher-order
CDMs for rich types of responses. Our framework features a highly flexible data layer that
is adaptive to various response types and measurement models for CDMs. Importantly, we
address a challenging exploratory estimation scenario where the item-attribute relationship,
specified by the Q-matrix, is unknown and needs to be estimated along with other parameters.
In the higher-order layer, we employ a probit-link with continuous latent traits to model the
binary latent attributes, highlighting its benefits in terms of identifiability and computational
efficiency. Theoretically, we propose transparent identifiability conditions for the exploratory
setting. Computationally, we develop an efficient Monte Carlo Expectation-Maximization al-
gorithm, which incorporates an efficient direct sampling scheme and requires significantly
reduced simulated samples. Extensive simulation studies and a real data example demonstrate
the effectiveness of our methodology.

Keywords: Cognitive Diagnostic Models; Identifiability; Monte Carlo Expectation-Maximization
(MCEM) Algorithm; Probit Model; Q-matrix.

1 Introduction

Cognitive Diagnostic Models (CDMs), or Diagnostic Classification Models (Templin et al., 2010),

have emerged as a crucial tool for modeling educational assessment data with multidimensional
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discrete (often binary) latent variables. Various diagnostic goals lead to CDMs with different

measurement models; examples include the Deterministic Input Noisy Output “And” gate model

(DINA; Junker and Sijtsma, 2001) with the conjunctive assumption, the Deterministic Input Noisy

Output “Or” gate model (DINO; Templin and Henson, 2006) with the disjunctive assumption, the

main-effect diagnostic models (DiBello et al., 2012; Maris, 1999; de la Torre, 2011) incorporating

the additive effects of latent attributes, and the all-effect general diagnostic models (de la Torre,

2011; Von Davier, 2008; Henson et al., 2009) with a more saturated parameterization.

Currently, most existing CDMs are designed to model binary or polytomous response data.

However, the diversification of examination modes and increased availability of educational and

psychological data have enabled the collection of various response data types. Continuous response

data arise in many scenarios, such as language proficiency tests scoring on a continuous scale and

recording response time in computer-based assessments (Minchen et al., 2017). The modeling of

response times has long been a topic of interest, see De Boeck and Jeon (2019) for a comprehensive

overview. Another common response type is count responses, found in assessments recording the

number of correct responses, the frequency of specific behaviors in classroom activities, the usage

frequency of particular strategies in problem-solving tasks, and computer-based tests recording

visit counts per item (Man and Harring, 2019; Liu et al., 2022). Rasch (1993) first proposed a

Poisson-based item response theory (IRT) model for count data, and since then, many other models

have been developed (Magnus and Thissen, 2017; Man and Harring, 2019, 2023).

A crucial element in a CDM is the relationship between observed item responses and latent

attributes, specified by the Q-matrix (Tatsuoka, 1983). Recently, Lee and Gu (2024b) proposed

a new cognitive diagnostic modeling framework for general response types with a prespecified

Q-matrix. However, in many practical applications, the true Q-matrix may not be known a priori,

necessitating an exploratory approach to infer the Q-matrix directly from the response data. In

such challenging exploratory settings for flexible data types, estimating the Q-matrix reliably and

efficiently is highly desirable but largely unknown. Beyond exploratory CDMs and general re-

sponse types, integrating a higher-order layer into CDMs (de la Torre and Douglas, 2004; Templin

et al., 2008) offers significant advantages. Such models uses one or more continuous latent traits to
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explain the binary attributes, providing a more nuanced understanding of the relationships between

different skills, yielding a comprehensive and realistic representation of cognitive processes.

This paper makes the following key contributions. First, we develop a unified framework for

modeling higher-order general-response cognitive diagnostic models (HO-GRCDMs). We formu-

late the bottom layer (data layer) of HO-GRCDMs using flexible exponential family distributions.

This allows the model to directly adapt to different types of responses (binary, continuous, count,

etc.) by altering the parametric family and various types of measurement assumptions (main-effect,

all-effect, DINA, etc.) by modifying the latent covariate vector. In the higher-order layer, we em-

ploy a probit model to describe the relationship between the higher-order continuous latent traits

and the binary latent attributes. The higher-order modeling approach was originally proposed by

de la Torre and Douglas (2004) for binary response data, referred to as the higher-order CDM. We

generalize it to general response types and employ a probit link instead of the logit link used in

de la Torre and Douglas (2004). As will be discussed later, using a probit link for the higher-order

layer provides significant theoretical and computational advantages.

Second, we establish identifiability for the proposed HO-GRCDMs. Model identifiability is

a crucial prerequisite for valid statistical estimation, but it is a challenging issue for complex la-

tent variable models such as HO-GRCDMs. While the identifiability of single-layer exploratory

CDMs for categorical data has been extensively studied (e.g., Xu and Shang, 2018; Culpepper,

2019; Chen et al., 2020), much less is known about the identifiability of CDMs with higher-order

structures. Lee and Gu (2024b) provides identifiability results for general response CDMs with

a known Q-matrix, but that also does not guarantee the identifiability of an HO-GRCDM. Some

existing studies established identifiability for CDMs with higher-order discrete latent structures,

including the Bayesian pyramid model in Gu and Dunson (2023) and the DeepCDM in Gu (2024).

However, the identifiability issue of CDMs with higher-order continuous latent traits is still under-

explored, despite these models’ popularity (de la Torre and Douglas, 2004; Templin et al., 2008;

Wang et al., 2018). To our best knowledge, our identifiability results are the first to identify CDMs

with multidimensional higher-order continuous latent traits.

Third, we propose an efficient Monte Carlo Expectation-Maximization (MCEM) algorithm for
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estimating HO-GRCDMs. The computational challenge of HO-GRCDM arise from three aspects:

(a) the various types of response data, (b) the complex hierarchical structure that consists of both

binary and continuous latent variables, (c) and the unknown Q-matrix. A typically approach to

parameter estimation of such models is to regard the latent variables as missing data and employ

Markov chain Monte Carlo (MCMC; Robert and Casella, 2004) or an EM-type algorithm, where

the latter method is usually faster. However, the complex hierarchical structure in our model makes

the maximization of the complete data log-likelihood intractable during the typical EM updates. In

this paper, we propose an MCEM algorithm to maximize the regularized maximum likelihood to

simultaneously estimate the Q-matrix and other parameters. Similar to Chen et al. (2015), we con-

sider the Q-matrix estimation as a latent variable selection problem, and maximize log-likelihood

with L1 penalty. Our method provides the first non-MCMC method for parameter estimation in the

category of CDMs with a multidimensional higher-order structure.

Our estimation framework incorporates an efficient direct sampling scheme and features sig-

nificantly reduced simulated samples. The continuous latent traits θ in the higher-order layer are

the only latent variables whose realization need to be sampled. After imputing the missing data

θ , the M-step optimization becomes more tractable, and we solve this by the cyclical coordinate

ascent (Friedman et al., 2010; Tay et al., 2023). Here, the simulation of θ has been a crucial issue

in both IRT and higher-order CDM estimation. The MCMC method, commonly used for this pur-

pose, often suffers from slow convergence and requires careful tuning of algorithm parameters. In

this paper, we highlight that, benefiting from the use of a probit link for the higher-order layer, we

can directly simulate θ from a unified skew-normal distribution according to the recent theoretical

results of Li et al. (2023). Last but not least, initialization is an important issue for the efficiency

of an algorithm. We employ an efficient Singular Value Decomposition (SVD)-based method for

finding initial values, which is an extension of Chen et al. (2019) and Zhang et al. (2020) from the

binary response case to the general response case. This non-iterative method is computationally

fast and enjoys statistical consistency guarantees under certain conditions (Zhang et al., 2020).

The rest of this paper is organized as follows. Section 2 introduces the framework of HO-

GRCDM. Section 3 presents the identifiability results for HO-GRCDM. Section 4 develops an ef-
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ficient MCEM algorithm for parameter estimation. Section 5 conducts extensive simulation studies

for HO-GRCDM under various measurement models, higher-order structures, and response types.

Section 6 applies our methodology to a response time data set extracted from the TIMSS 2019

math assessment. Section 7 concludes the paper and discusses future research directions.

2 Model Setup

Assume there are N examinees responding to a test with J items. For each examinee, the observed

response vector R = (R1, . . . ,RJ) is a J-dimensional vector. Depending on the assessment design,

the response R j could be binary, polytomous, counted-valued, continuous, and so on. We represent

an examinee’s latent skill profile as a K-dimensional random vector, A = (A1, . . . ,AK)
⊤ ∈ {0,1}K ,

and let α ∈ {0,1}K be an arbitrary binary vector. Let P j
ν denote the prespecified parametric family

for the jth response, with parameter ν = ν j,α. Before introducing the specific notations, we first

present the general form of HO-GRCDM as,

R j | A =α,ν ∼ P j
ν j,α , where ν j,α = [β j]⊤h(α), j = 1, . . . ,J; α ∈ {0,1}K; (1)

P(Ak = 1|θ ;λ1
k,λ k

0 ) = f−1(θ⊤
λ1

k +λ0
k), k = 1, . . . ,K; (2)

θ ∼ N(0,Σθ ). (3)

Equations (1)-(3) describe a CDM with a three-layer hierarchical structure, with the observed

general-response data R at the bottom layer, the binary latent attributes A at the middle layer, and

the higher-order Normal latent variables θ ∈ RD at the top layer.

A CDM typically consists of two main components: the measurement part and the latent part.

The measurement part, defined in (1), describes how the observed responses R depend on the latent

attributes α. We consider a very broad framework that allows flexible response types and various

measurement models. The latent part, defined in (45) and (3), models the binary attributes. In the

following sections, we separately define each part of the HO-GRCDM. For notational simplicity,

for a positive integer M, let [M] be the set of all positive integers {1, . . . ,M}.
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2.1 Bottom Data Layer: CDMs with General Responses (GR-CDMs)

In the bottom layer (1), an examinee’s observed responses depend on his/her statuses of K binary

latent attributes. Here Ak = 1 indicates the k-th attribute is mastered; otherwise, Ak = 0. The h(α)

is a latent covariate vector consisting of certain main effects and interaction effects of attributes,

and β j is a parameter vector that we will further specify. The parameter ν j,α = [β j]⊤h(α) is a

linear combination of β j and h(α). For convenience of presentation, we assume that for all items

j = 1, . . . ,J, the P j
ν j,α are the same parametric family, and omit the superscript.

We first elaborate on the choice of the parametric family Pν that can be used to model each

response type. Below, we denote g(·; ν) as the probability mass/density function (pmf/pdf) of

the parametric family under consideration. The Bernoulli distribution with mean ν can be used

to model binary responses (de la Torre, 2011; Maris, 1999). Alternatively, one can assume that ν

is the logit transform of the Bernoulli mean, as for the case of the Logistic Linear Model (LLM,

Maris, 1999). Equivalently, we model the Bernoulli mean as logistic(ν) := 1/(1+ exp(−ν)):

P(R j = r|A =α,ν j,α) = g(r; logistic(ν j,α)) =
exp(−ν j,α)

1−r

1+ exp(−ν j,α)
, r = 0,1. (4)

In this work, we allow very diverse choices of non-categorical responses such as count and contin-

uous data. For count-valued data, the Poisson distribution with mean ν can be used:

P(R j = r|A =α,ν j,α) = g(r; ν j,α) =
(ν j,α)

r

r!
exp(−ν j,α), r = 0,1,2, . . . (5)

For unbounded continuous responses, one can use a normal distribution, where ν j,α denotes the

mean parameter. Together with an additional variance parameter σ2
j , we have

g(r; ν j,α) =
1√

2πσ2
j

exp

{
−
(
r−ν j,α

)2

2σ2
j

}
, (6)

For continuous responses with a constrained range, one can use transformed-normal distributions.
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For example, the log-normal distribution can be used for modeling positive responses:

g(r; ν j,α) =
1√

2πσ2
j r

exp

{
−
(
log(r)−ν j,α

)2

2σ2
j

}
, (7)

and the logistic-normal distribution for responses within the range of (0,1):

g(r; ν j,α) =
1√

2πσ2
j r(1− r)

exp

{
−
(
log(r/(1− r))−ν j,α

)2

2σ2
j

}
. (8)

Alternatively, to model positive continuous responses, we can also use the Gamma distribution:

g(r; ν j,α) =
ν

s j
j,α

Γ(s j)
rs j−1 exp

{
−ν j,α · r

}
, j = 1, · · · ,J (9)

Here, ν j,α > 0 is the rate parameter, and s j > 0 is the shape parameter.

Next, we specify the assumptions on the parameter ν j,α. In the literature of cognitive di-

agnostic modeling, a common assumption involves a pre-specified Q-matrix (Tatsuoka, 1983),

Q = [q jk]J×K , that describes which of the K attributes are measured by each of the J items. If

q jk = 1, then the k-th attribute is measured by the j-th item; otherwise, q jk = 0. So, the value of

ν j,α must depend only on the attributes specified by the j-th row of the Q-matrix. While the Q-

matrix is often assumed to be provided along the data, we consider a more challenging exploratory

estimation scenario where the Q is unknown and need to be estimated along with other parameters.

Given the Q-matrix, one needs some structural assumptions on how ν j,α = [β j]⊤h(α) de-

pends on the Q-matrix entries. Here, we present three popular measurement model assump-

tions on the parameters β j and the function h(·). First, the main-effect GR-CDM assumes that

β j =
(

β
j

0 ,β
j

1 , · · · ,β
j

K

)⊤
, and h(α) = (1,α1, · · · ,αK)

⊤. Then, we can write Eq. (1) as

P(R j|A = α,β j) = g

(
R j; β

j
0 +

K

∑
k=1

β
j

k q j,kαk

)
. (10)

For illustration, suppose that we are considering binary responses and Pν is the Bernoulli distribu-
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tion, then (10) becomes the Additive Cognitive Diagnosis Model (ACDM; de la Torre).

Next, the all-effect GR-CDM assumes β j =
(

β
j

0 ,β
j

1 , · · · ,β
j

K,β
j

1,2, · · · ,β
j

K−1,K, · · · ,β
j

1,2,...,K

)⊤
,

and h(α) =
(
1,α1, · · · ,αK,α1α2, · · · ,αK−1αK, · · · ,∏K

k=1 αk
)⊤. The pmf/pdf becomes

P(R j|A = α,β j) = g

(
R j; β

j
0 +

K

∑
k=1

β
j

k q j,kαk

+ ∑
1≤k1≤k2

β
j

k1k2

{
q j,k1αk1

}{
q j,k2αk2

}
+ · · ·+β

j
1,2,...,K

K

∏
k=1

{
q j,kαk

})
. (11)

Note that for the case of binary responses, this becomes the GDINA model (de la Torre, 2011).

Finally, we introduce the GR-DINA model. We borrow the notations from the all-effect models,

and take β j =
(

β
j

0 , β
j
K j

)⊤
and h(α) =

(
1, ∏k∈K j(q j,kαk)

)⊤
. Here, K j =

{
k ∈ [K] : q jk = 1

}
denotes the set of attributes that are measured by item j. Then the pmf/pdf is written as

P(R j|A = α,β j) = g

(
R j; β

j
0 +β

j
K j ∏

k∈K j

(q j,kαk)

)
. (12)

Note that the above formulation can be regarded as a special case of all-effect GR-CDM. Under

binary responses, this model is the popular Deterministic Input, Noisy “And” gate model (DINA;

Junker and Sijtsma, 2001) model with the conjunctive assumption. Under positive continuous

responses, (12) becomes the continuous DINA model (c-DINA; Minchen et al., 2017).

For main-effect and all-effect GR-CDMs, the Q-matrix should constrain certain β -coefficients

to be zero. For example, under the main-effect model, we must have β
j

k = 0 for k for which q jk = 0.

Under the all-effect model, we must have β
j

S = 0 when S ̸⊆ K j. Since we consider an unknown

Q-matrix, the index of such zero coefficients is also unknown and needs to be estimated from data.

2.2 Latent Layers: Higher-Order Latent Trait Model for Binary Attributes

As shown in Equations (45) and (3), we consider a higher-order latent layer to model the attributes

α. We introduce a D-dimensional continuous latent trait, θ = (θ1, . . . ,θD)
⊤. There are two com-

mon choices for the invertible link function f : the logit link function f (x) = log(x/1− x), and the
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probit link function f (x) = Φ−1(x), where Φ is the cumulative distribution function of a standard

normal random variable. In this paper, we employ the probit link function and let

P(Ak = 1|θ ,λ1
k,λ k

0 ) = Φ(θ⊤
λ1

k +λ
k
0 ), k = 1,2, . . . ,K. (13)

Here, λ1
k = (λ k

1,1, . . . ,λ
k
1,D)

⊤ and λ k
0 are the slopes and the intercept, respectively. Let λ1 =

(λ1
1, . . . ,λ1

K)
⊤

be a matrix consisting of slope parameters of all K attributes, and λ0 =(λ 1
0 , . . . ,λ

K
0 )⊤

be a vector consisting of intercept parameters of all K attributes. We assume a pre-specified bi-

nary matrix Q(H) = [q(H)
kd ]K×D, which constrains the sparsity structure of λ1 to enhance the inter-

pretability. The entry q(H)
kd = 1 implies that the d-th continuous latent variable θd contributes to the

mastering of the k-th binary latent attribute Ak. In Equation (3), θ is assumed to follow a D-variate

normal distribution, θ ∼ N(0D,Σθ ), where the zero mean vector 0D is to fix the measurement ori-

gin, and the covariance matrix Σθ = (σdd′) has unit diagonal entries to fix the measurement units.

That is, σdd = 1, for d = 1, . . . ,D. We also assume that the first item loading on each factor is

positive to resolve the sign indeterminacy issue of the latent factors.

The higher-order latent layer is introduced to resemble an item response model (Lord, 1952;

Birnbaum, 1968). This modeling approach was initially used in de la Torre and Douglas (2004),

where the authors considered binary responses and assumed both the bottom layer’s Q matrix and

the latent layer’s Q(H) matrix were known. In addition to the higher-order CDM, another approach

introduced by Templin et al. (2008) employed a multivariate probit model with a single continuous

latent factor. In that work, each binary attribute is derived by dichotomizing a Normal random vari-

able at a specific threshold, with the K Normal variables modeled using a factor analysis structure.

Intuitively, the higher-order latent structure should be more parsimonious than the bottom layer,

as it generally represents more abstract factors/traits in a higher level. For this aim, a subscale

structure for Q(H) may be appropriate, where each attribute is associated with only one latent trait

among all the D traits. In other words, an attribute Ak exclusively depends on a latent trait θd ,

and we have q(H)
kd = 1. For all other groups indexed by d′ ̸= d, we assume q(H)

kd′ = 0 and λ k
1,d′ = 0

to not include their effect on αk. However, in some cases, this structure may be too simple to
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capture the relationship between A and θ . To address this, the bifactor structure with an additional

general factor could be a more flexible alternative yet still being parsimonious. In the bifactor

structure, we assume that there are D−1 groups (indexed by d = 1, . . . ,D−1), and that each binary

attribute is assigned to exactly one group. Each attribute αk that belongs in group d is influenced

by two latent factors: a general factor θ1, and a group-specific factor θd+1. Consequently, we have

qk1 = q(H)
k(d+1) = 1. The effects of the other groups d′ ̸= d are assumed to be zero, that is q(H)

k(d′+1) = 0

and λ k
1,d′+1 = 0. In the remainder of the paper, we will assume that the higher-order model follows

either the subscale or bifactor structure with a known Q(H) matrix/group information.

2.3 Benefits of the Probit Link for Modeling the Higher-order Layer

We elaborate on our rationale for choosing the probit link to model the higher-order layer, as

opposed to the more common logit link. There are mainly two advantages in doing so. To see this,

we first present the marginal distribution of the binary random vector A obtained using the probit

link. For each α ∈ {0,1}K , the marginal probability of A = α under our model is

πα := P(A = α) = P
(

ε1 ≤ (−1)(α1+1)(λ 1
0 +λ1

1⊤
θ), . . . ,εK ≤ (−1)(αK+1)(λ K

0 +λ1
K⊤

θ)
)

= P
(
(−1)(α1)λ

1
0 +

√
λ1

1
⊤
Σθλ

1
1ξ1 ≤ 0, . . . ,(−1)(αK)λ

K
0 +

√
λK

1
⊤
Σθλ

K
1 ξK ≤ 0

)

= ΦK

 (−1)(α1+1)λ 1
0√

λ1
1
⊤
Σθλ

1
1 +1

, . . . ,
(−1)(αK+1)λ K

0√
λK

1
⊤
Σθλ

K
1 +1

, Cρ

 , (14)

with a tetrachoric correlation matrix Cρ = (Cρ(k1,k2))K×K:

Cρ(k1,k2) =
(−1)(αk1+αk2)λk1

1
⊤
Σθλ

k2
1√

λk1
1
⊤
Σθλ

k1
1 +1

√
λk2

1
⊤
Σθλ

k2
1 +1

for k1 ̸= k2 ∈ [K], and Cρ(k,k) = 1 for k ∈ [K]. Here, ξk and εk are independent and identically dis-

tributed standard normal random variables, and ΦK represents the cumulative distribution function

(CDF) of a K-variate normal distribution; see more details in Fang et al. (2021).

The first virtue of using the probit link is for establishing model identifiability. Using (14), Fang
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et al. (2021) proved that the probit model’s identifiability boils down to identifying the parameters

(λ k
0 ,λ

k
1) based on the threshold values λ 1

0 /(λ
1
1
⊤
Σθλ

1
1 +1)1/2, and the pairwise tetrachoric corre-

lations. This means that identifiability is reduced to a problem similar to the identifiability of linear

factor models. In contrast, this property does not exist when using a logit link, which involves a

complex convolution of Gaussian and logistic random variables.

The second advantage of using a probit link is on computation. First, the explicit form

of the marginal distribution of A in (14) significantly reduces the computational complexity

of parameter estimation. When using an EM-type algorithm, once the conditional expectation

Eθ [l(θ ,A,R)|A,R], where l(θ ,A,R) is the log-likelihood, is computed, the whole conditional ex-

pectation EA[Eθ [l(θ ,A,R)|A,R]|R] in the E-step is available, as the out-layer expectation can be

easily computed according to Equation (14). Second, utilizing the probit link enables the develop-

ment of an efficient sampling scheme, as it allows direct sampling of θ from the target distribution

θ |A,R,λ1,λ0. As detailed in Section 4.2.1, θ |A,R,λ1,λ0 follows a unified skew-normal distribu-

tion, whose samples can be obtained by a direct combination of samples from truncated normal

and multivariate normal distributions.

3 Identifiability

We next propose conditions that guarantee the identifiability of HO-GRCDMs. For a statistical

model {Pν} indexed by a set of parameters ν , we say that the model is identifiable at the true

parameter ν0 when the equality between marginal distribution of the observed variables Pν = Pν0

implies equal parameter values ν = ν0. Identifiability is a fundamental prerequisite for consistent

parameter estimation and valid model interpretation.

We first present separate identifiability conditions for (a) the bottom layer exploratory GR-

CDM and (b) the higher-order continuous latent layer as if the binary attributes were observed

binary responses. Then, we combine these results using a layer-wise proof argument similar to

that in Gu (2024) and derive identifiability conditions for HO-GRCDMs. More specifically, we

first marginalize out the top continuous layer and identify the GR-CDM parameters, including the
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proportion parameters π = (πα; α ∈ {0,1}K) describing the marginal distribution of the binary

attributes. Next, we use the estimated GR-CDM proportion parameters π and (14) to identify the

parameters in the higher-order probit model. We define saturated GR-CDMs as follows.

Definition 1 (Saturated GR-CDM). A saturated GR-CDM with parameters (π,β ,Q) is a CDM

without an higher-order structure, defined by (1) and with proportion parameters πα for each

binary attribute pattern α ∈ {0,1}K . Here,π = (πα) satisfy ∑α∈{0,1}K πα = 1, and πα > 0.

We impose a monotonicity condition on the item parameters to avoid the sign-flipping for each

latent attribute; that is, to distinguish between Ak = 0 and 1. Motivated by the popular monotonicity

conditions for binary-response CDMs (Xu and Shang, 2018), we assume that

ν j,α > ν j,α′ for all j ∈ [J], α⪰ q j, α
′ ̸⪰ q j (15)

holds for all saturated GR-CDMs, and also for all HO-GRCDMs. Here, q j is the j-th row of Q.

The assumption (15) means that the students possessing all required skills for the jth item have

a larger ν-parameter in the distribution R j | A than those who lack some required skills. This

condition can be further simplified under specific GR-CDMs. For example, (15) is equivalent to

β
j
K j

> 0 under the DINA model, and to β
j

k > 0 for q j,k = 1 under the ACDM. The following result

is from Proposition 1 in Lee and Gu (2024a).

Proposition 1. Under the saturated DINA/main-effect/all-effect GR-CDM that satisfies the mono-

tonicity condition (15), the model components (π,β ,Q) are identifiable up to a permutation of the

K latent attributes when the following conditions hold.

A. The true Q-matrix contains two submatrices IK after row swapping, i.e., Q can be written as

Q = [IK,IK,Q∗⊤]⊤.

B. Suppose that the Q-matrix is written as in A. For any α ̸= α′, there exists j > 2K such that

ν j,α ̸= ν j,α′ .
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In particular, condition B holds when the Q-matrix also contains another identity submatrix IK .

Conditions A and B resemble popular identifiability conditions for CDMs with categorical re-

sponses (Xu and Shang, 2018; Culpepper, 2019). Lee and Gu (2024b) showed that these conditions

also suffice for identifying GR-CDMs, but under the confirmatory setting with a known Q-matrix.

Next, we present identifiability conditions for the higher-order probit layer in HO-GRCDMs.

Here, we view the probit model as a parametric family with parameters (λ0,λ1,Σθ ) and probabil-

ity mass function in (14). Recall that we consider the subscale model and the bifactor model with

a known higher-order loading structure Q(H) to model the K binary attributes.

We first present the necessary and sufficient conditions for the subscale model, which is proved

by heavily utilizing the properties of the probit link mentioned after (14). This identifiability result

may be of independent interest in the item response theory literature. We present the proofs of all

theoretical results in the Supplementary Material.

Proposition 2. Consider the subscale model with K attributes (A1, . . . ,AK) and D-dimensional

Gaussian latent factors θD. For d ∈ [D], let Kd = ∑
K
k=1 q(H)

k,d denote the number of attributes that

belong to group d. Then, the model is identifiable if and only if one of the below conditions holds

for all d ∈ [D]:

C1. Kd ≥ 3,

C2. Kd = 2, σdd′ ̸= 0 for some d ̸= d′.

To summarize the above conditions C1 and C2, the subscale model with three or more at-

tributes for each group is identifiable. Interestingly, to ensure identifiability, we require at least two

attributes to belong to each group, which boils down to assuming condition A on the Q(H)-matrix.

Next, we present identifiability conditions for the bifactor model, where the D-dimensional

latent vector θ consists of one general factor (θ1) and D− 1 group effects (θ2, . . . ,θD). Here, it

is necessary to assume an additional orthogonal structure between the general and group-specific

factors to resolve a trivial rotational ambiguity (see Section 4.1 in Fang et al., 2021). For each

d ∈ [D− 1], let Ld ⊆ [K] be the collection of attributes that belong to the dth group. We also let

λ
Ld
1,d′ be a sub-vector of λ1,d′ = (λ 1

1,d′, . . . ,λ K
1,d′)⊤ that consists of the indices k ∈ Ld .

13



Proposition 3 (Theorem 7 in Fang et al. (2021)). Consider the bifactor model with K binary

attributes and D-dimensional Gaussian latent variables with covariance Σθ =

1 0⊤

0 Σ⋆
θ

 , where

Σ⋆
θ

is a (D−1)× (D−1) symmetric positive definite matrix with Diag(Σ⋆
θ
) = ID−1. Let H := {d ∈

[D−1] : λLd
1,1 and λLd

1,d+1 are linear independent}. Then, the model is identifiable if

|{k ∈ Ld : λ
k
1,d+1 ̸= 0}| ≥ 3 for all d ∈ [D−1], (16)

and one of the following conditions hold:

C3. |H| ≥ 3,

C4. |H|= 2, and there exists a group d such that Ld can be partitioned into Ld,1 and Ld,2 so that

λ
Ld,a
1,1 and λ

Ld,a
1,d+1 are linearly independent for both partitions a = 1,2.

Combining the above results, we can establish the desired identifiability result for HO-

GRCDMs. The main argument is to sequentially identify the latent layers, similar to previous

works for multilayer variants of CDMs (Gu and Dunson, 2023; Gu, 2024).

To resolve the latent attribute permutation issue in Proposition 1, we additionally assume that

there is a pre-specified anchor item for each latent attribute. This means for each latent attribute Ak,

we know that some item jk ∈ [J] measures Ak and does not measure any other attribute. Without

loss of generality, combined with condition A, we can assume that the first K items are the anchor

items for the K binary attributes.

Theorem 1. The following two identifiability conclusions hold.

(a) Consider an HO-GRCDM with a subscale higher-order layer and known anchor items. The

model is identifiable when the true bottom layer GRCDM parameters Q,β satisfy conditions

A and B, and the true latent layer parameters Q(H),Σθ satisfy either condition C1 or C2.

(b) Next, consider an HO-GRCDM with a bifactor higher-order layer and known anchor items.

The model parameters are identifiable when the true parameters satisfy conditions A, B, (16),

and either C3 or C4.
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Theorem 1 provides our main result that guarantees the HO-GRCDMs are identifiable. Note

that even with the anchor item assumption, we are still identifying all other J −K rows of the

Q-matrix. Note that by considering binary responses in the CDM, this result can be applied to

establish identifiability of the celebrated HO-LTM with a probit link.

4 A New MCEM Algorithm

In this section, we develop an MCEM algorithm to estimate HO-GRCDMs. We first define some

notations. Suppose there are N subjects response to a test consisting of J items. Let i= 1, . . . ,N and

j = 1, . . . ,J denote the index of subjects and items, respectively. The test is designed to measure

K binary latent attributes for each subject i, Ai = (Ai1, . . . ,AiK)
⊤, which is further determined by

D higher-order continuous latent variable, θi = (θi1, . . . ,θiD)
⊤. We slightly abuse notation and use

R = [Ri j]N×J = (R1, . . . ,RN)
⊤ to denote the observed response matrix. Let Θ = (θ1, . . . ,θN)

⊤

be the N ×D matrix that collects continuous latent variables for the N subjects, and define A =

(A1, . . . ,AN)
⊤ as the N ×K matrix consisting of the binary attribute profiles for all N subjects.

Let β and λ denote the set of all the coefficient parameters in the first (1) and second layer (45),

respectively. Additionally, we aim to estimate the Q-matrix in the CDM layer and the covariance

matrix Σθ for the continuous latent traits (3). Note that estimating Q by directly maximize the

marginalized log-likelihood is computationally infeasible even for a moderate size of J and K.

This is because one need to compute the profile likelihood based on each Q among 2J×K possible

matrices, and find out the one that maximizes the profile likelihood. One solution to avoid such

expensive computation is to consider the estimation of Q as a latent variable selection problem and

solving it through a regularized maximum likelihood estimator (Chen et al., 2015). In particular,

we maximize the regularized marginal log-likelihood l(β ,λ,Σθ |R) with an L1 penalty ps(β ):

(β̂ , λ̂,Σ̂θ , Q̂) = arg max
β ,λ,Σθ

(l(β ,λ,Σθ |R)−N · ps(β )) , (17)
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where the log-likelihood function can be written as

l(β ,λ,Σθ ,Q|R) =
N

∑
i=1

log

 ∑
α∈{0,1}K

J

∏
j=1

P(Ri j|α;β
j)
∫

P(α|θ ;λ) f (θ |Σθ )dθ

 , (18)

and the penalty function is defined as

ps(β ) =
J

∑
j=1

ps(β
j) =

J

∑
j=1

s ∑
β

j
k ∈β j

|β j
k |

 , (19)

where s is the regularization parameter. Here, the Q-matrix does not need to appear explicitly in

the log-likelihood expression because its information is implicitly captured by the sparsity of the

coefficients. After solving (17), Q can be estimated by identifying the non-zero pattern of β̂ .

The mechanism for identifying the entries q jk in the Q-matrix varies across different measure-

ment models. For main-effect models, Q can be recovered using the rule q jk = 1(β j
k ̸= 0), where

1 is the indicator function. For all-effect models, theoretically, each row of Q should be identified

by the highest-order non-zero coefficient. Specifically, if ∃S ⊆ [K] such that β
j

S ̸= 0 and β
j

S′ = 0

for all S′ ⊆ [K],S ⊂ S′, then q jk = 1 for k ∈ S; otherwise, q jk = 0. However, this strict rule may not

be always applicable because some estimated β -coefficients may be close to zero but not exactly

zero. In practice, a more effective approach is either to choose the largest non-zero interaction

coefficient or to truncate the coefficients before identifying Q. For the latter approach, we recom-

mend practitioners set the truncation thresholds based on the general magnitude of their estimated

coefficients. For the DINA model, since there should be only one non-zero coefficient for each

item j, the largest non-zero interaction coefficient can be selected, and the corresponding q jk can

be identified as equal to one.

The maximization problem presented in Equation (17) is quite complex due to the summation

of integrals inside the log function and cannot be solved directly. The Expectation-Maximization

(EM) algorithm is a popular method that iterates between the E-step and the M-step to seek the

maximizer, and we first introduce the penalized variant of the EM algorithm in Section 4.1. This

basic EM algorithm still suffers from the intractable integrals in the E-step, which motivates us to
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propose a more scalable novel Monte Carlo EM algorithm in Section 4.2.

4.1 Penalized EM algorithm

We first introduce the basic procedure of a penalized EM algorithm. A usual EM algorithm al-

ternates between two steps: in the E-step, the expected complete data log-likelihood is computed,

and in the M-step, the parameters are updated by maximizing this expected log-likelihood. The

penalized EM algorithm follows the same procedure but includes a penalty term in the M-step to

regularize the parameter estimates.

The complete data log-likelihood in a HO-GRCDM is

l(β ,λ,Σθ |R,A,Θ) = log

(
N

∏
i=1

J

∏
j=1

P(Ri j|Ai;β
j)P(Ai|θi;λ) f (θi|Σθ )

)
△
= l1(β ,R,A)+ l2(λ,θi,A)+ l3(θi,Σθ ), (20)

with

l1(β ,R,A) =
N

∑
i=1

∑
α∈{0,1}K

1(Ai =α)
J

∑
j=1

log
(
P
(
Ri j|Ai =α;β

j)) , (21)

l2(λ,θi,A) =
N

∑
i=1

∑
α∈{0,1}K

1(Ai = α)
K

∑
k=1

(
αk logΦ

(
θ
⊤
i λ1

k +λ
k
0

)
+(1−αk) log

(
1−Φ

(
θ
⊤
i λ1

k +λ
k
0

)))
, (22)

l3(θi,Σθ ) =
N

∑
i=1

(
−D

2
log(2π)− 1

2
log |Σθ |−

1
2

θ
⊤
i Σθ θi

)
. (23)

Let η = (β ,λ,Σθ ) generically denotes the collection of all parameters. For any parameter, a

superscript “(t)” denotes the values obtained in the tth iteration. Each iteration t of the penalized

EM algorithm contains the following two steps:

E-Step: Compute the Q-function as the expectation of the complete data log-likelihood:

Q(t)(β ,λ,Σθ ) = E(A,Θ)

[
l(β ,λ,Σθ |R,A,Θ) | R; β̂

(t−1), λ̂(t−1),Σ̂
(t−1)
θ

]
, (24)
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where the conditional expectation is with respect to P(A,Θ|R). We break down Q(t)(β ,λ,Σθ )

into three parts,

Q(t)(β ,λ,Σθ ) = Q1
(t)(β )+Q2

(t)(λ)+Q3
(t)(Σθ ),

with

Q1
(t)(β ) = EA[l1|R; η̂

(t−1)] =
N

∑
i=1

∑
α∈{0,1}K

J

∑
j=1

log
(
P
(
Ri j|α;β

j))
ψ

(t−1)
i,α , (25)

Q2
(t)(λ) = E(A,Θ)[l2|R, λ̂(t−1),Σ̂

(t−1)
θ

] =
N

∑
i=1

∑
α∈{0,1}K

Eθi[l2
(i,α)|α, λ̂(t−1),Σ

(t−1)
θ

]ψ
(t−1)
i,α , (26)

Q3
(t)(Σθ ) = E(A,Θ)[l3|R, λ̂(t−1),Σ̂

(t−1)
θ

] =
N

∑
i=1

∑
α∈{0,1}K

Eθi[l3
(i)|α, λ̂(t−1),Σ

(t−1)
θ

]ψ
(t−1)
i,α . (27)

Here the common term ψ
(t−1)
i,α has the following expression,

ψ
(t−1)
i,α =P(Ai = α|Ri; β̂

(t−1), λ̂(t−1),Σ̂
(t−1)
θ

) (28)

=
P(Ri|Ai = α; β̂ (t−1))P(Ai = α; λ̂(t−1),Σ̂

(t−1)
θ

)

∑
α∈{0,1}K P(Ri|Ai = α; β̂ (t−1))P(Ai = α; λ̂(t−1),Σ̂

(t−1)
θ

)
,

and l2(i,α) and l3(i) denote the corresponding terms in the summation indexed by i and α presented

in Equations (22) and (23), respectively.

M-Step: Update the parameters by maximizing the penalized Q-function:

η̂
(t) = (β̂ (t), λ̂(t),Σ̂

(t)
θ
) = arg max

β ,λ,Σθ

Q(t)(β ,λ,Σθ )−N · ps(β ), (29)

This is typically a convex optimization for exponential family distributed responses.

4.2 Monte Carlo EM Algorithm with an Efficient Sampling Scheme

4.2.1 Monte Carlo Integration for E-Step

As mentioned earlier, the probit link offers a significant advantage by enabling direct computa-

tion of the conditional expectation EA[·|R; η̂(t−1)] as shown in (25)-(27), due to the explicit form
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of P(A = α; λ̂(t−1),Σ̂
(t−1)
θ

) presented in (14). This simplifies the computational challenge of the

E-Step to calculating the inner expectations, Eθi[·|Ai = α, λ̂(t−1),Σ
(t−1)
θ

], as involved in (26)-(27).

Furthermore, conditional on Ai = α , λ̂(t−1), and Σ̂
(t−1)
θ

, θi’s are independent and identically dis-

tributed (i.i.d.). Using a general notation θ to represent θi in Equations (26)-(27), we have

Eθi

[
l2(i,α)|Ai = α, λ̂(t−1),Σ̂

(t−1)
θ

]
(30)

= Eθ

[
K

∑
k=1

(
αk logΦ

(
θ
⊤

λ1
k +λ

k
0

)
+(1−αk) log

(
1−Φ

(
θ
⊤

λ1
k +λ

k
0

)))∣∣∣∣Ai = α, λ̂(t−1),Σ
(t−1)
θ

]
,

and

Eθi

[
l3(i)|Ai = α, λ̂(t−1),Σ̂

(t−1)
θ

]
= Eθ

[
−D

2
log(2π)− 1

2
log |Σθ |−

1
2

θ
⊤Σ−1

θ
θ

]
. (31)

This representation implies that, when computing Q2
(t) or Q3

(t), only 2K expectations,

Eθ

[
·|Ai = α, λ̂(t−1),Σ

(t−1)
θ

]
, for α ∈ {0,1}K , need to be evaluated, regardless of the sample size

N.

Despite the significantly reduced computational complexity, the above expectations involve

multidimensional integrals and cannot be evaluated in closed form. We propose to use Monte

Carlo integration and draw Mt samples θ (m,α), m = 1, . . . ,Mt from P(θ |A = α; λ̂(t−1),Σ
(t−1)
θ

),

α ∈ {0,1}K , in the tth iteration. For any function w(θ ,α) of θ and α , we can approximate its

expectation as

Eθ [w(θ ,α)|A = α, λ̂(t−1),Σ̂
(t−1)
θ

] ≈ ∑
Mt
m=1 w(θ (m,α),α)

Mt
. (32)

By replacing w(θ ,α) with the corresponding terms within the square brackets in Equations (30)

and (31), we obtain Monte Carlo approximations for these expectations.

Sampling from f (θ |A = α; λ̂(t−1),Σ̂
(t−1)
θ

) has been a challenging issue in the literature of

both multidimensional IRT models and higher-order CDMs. A commonly used method is the

MCMC method, including the Metropolis–Hastings (MH; Cai, 2010) sampler and the Gibbs sam-

pler (Béguin and Glas, 2001; Culpepper, 2016). However, such methods suffer from slow conver-

19



gence to the target distribution, thereby slowing down the algorithm. Fortunately, with a probit

link used in the latent layers, directly sampling is feasible. According to Theorem 4.2 in Li et al.

(2023),

θ |A = α,R;λ1,λ0 ∼ SUND,K(0D,Σθ ,∆c,γc,Γc). (33)

Here, SUN denotes an unified skew-normal distribution (Arellano-Valle and Azzalini, 2006),

where ∆c =Σθ U1
⊤S−1, γc = S−1U2, Γc = S−1(U1Σθ U1

⊤+ IK)S−1, and

U1 = diag(2α1 −1, . . . ,2αK −1)λ1,

U2 = diag(2α1 −1, . . . ,2αK −1)λ0,

S = diag(U1
1
⊤
Σθ U1

1, . . . ,U
K
1
⊤
Σθ UK

1 ), (34)

with Uk
1
⊤ denoting the k-th row of U1. Furthermore, by Corollary 4.3 in Li et al. (2023), if (33)

holds, then the conditional distribution of θ is equal to the following distribution (where “ d
=” means

“equal in distribution”)

θ |A = α,R;λ1,λ0
d
= V0 +Σθ U1

⊤(U1Σθ U1
⊤+ IK)

−1SV1, (35)

where V0 is independent of V1 and

V0 ∼ N(0D,Σθ −Σθ U1
⊤(U1Σθ U1

⊤+ IK)
−1U1Σθ ), (36)

V1 ∼ T N(0D,S−1(U1Σθ U1
⊤+ IK)S−1,−∞,−S−1U2). (37)

Here, T N(0D,S−1(U1Σθ U1
⊤+ IK)

−1,−∞,−S−1U2) denotes a K-variate truncated normal distri-

bution with zero mean and covariance matrix S−1(U1Σθ U1
⊤+ IK)

−1 and truncation below the

threshold −S−1U2. This means that we can generate samples of θ by first drawing samples of V1

and V0, and then performing a linear combination of these. The sampling scheme is summarized in

Algorithm 1. This approach is efficient, as sampling from both the multivariate normal distribution
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and the truncated normal distribution is straightforward.

Algorithm 1 Direct Sampling Scheme for the E-Step

Input: The number of subjects N; the number of attributes K; model parameters λ̂(t−1) and Σ̂
(t−1)
θ

.
1. For each α ∈ {0,1}K:

Compute U1
(α), U2

(α) and S shown in Equation (14) using λ̂(t−1) and Σ̂
(t−1)
θ

.
2. For each m in {1,2, . . . ,Mt}, perform:

a) Sample V(α,m)
0 from:

N(0D,Σθ −Σθ U1
⊤(U1Σθ U1

⊤+ IK)
−1U1Σθ ).

b) Sample V(α,m)
1 from:

V1 ∼ T N(0D,S−1(U1Σθ U1
⊤+ IK)S−1,−∞,−S−1U2).

c) Compute θ (α,m) =

V(α,m)
0 + Σ̂

(t−1)
θ

(U1
(α))

⊤
(U1

(α)Σ̂
(t−1)
θ

(U1
(α))

⊤
+ IK)

−1SV(α,m)
1 .

Output: θ (α,m) for each m = 1, . . . ,Mt , α ∈ {0,1}K .

4.2.2 The M-Step Implementation

In M-Step, the maximization of Q(t) can be divided into three optimization problems.

β̂
(t) = arg max

β

Q1
(t)(β )−N · ps(β ), (38)

λ̂(t) = arg max
Θ

Q2
(t)(λ), (39)

Σ̂
(t)
θ

= arg max
Σθ

Q3
(t)(Σθ ), Σθ ⪰ 0, σdd′ = 1, d = 1, . . . ,D. (40)

The optimization objective in (38) incorporates an L1 penalty and utilizes various functions g(·)

according to the response data type and measurement models. The optimization of (39) falls within

the field of generalized linear models with a probit link. We use the coordinate ascent method, as

described in Friedman et al. (2010) and Tay et al. (2023), to solve both problems. This method is

known for its flexibility and power in solving such optimization problems.

Regarding the optimization of Equation (40), to estimate a covariance matrix with the con-

straint that diagonal elements must be ones, we employ a method inspired by the approach used

in Stan (Carpenter et al., 2017) and detailed by Lewandowski et al. (2009). Below, we elaborate

on this method as a two-step estimation procedure. First, we estimate Σθ without considering the
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constraints, and denote the resulting estimator as Σ̂∗
θ
= (σ̂∗

dd′). In each iteration t, according to

Equations (27) and (31), this solution can be directly derived as,

Σ̂
∗(t)
θ

=
1

MtN

Mt

∑
m=1

∑
α∈{0,1}K

(
θ
(m,α)

θ
(m,α)⊤

N

∑
i=1

ψ
(t−1)
i,α

)
. (41)

For simplicity, we neglect the iteration-specific notation (t) and introduce the computation based

on a general Σ̂∗
θ

.

Next, we compute the final estimator Σ̂θ that satisfies our diagonal constraints by reparame-

terizing the variance by its Cholesky decomposition Σθ = G⊤G. Let G = [gdd′], and let gd denote

the d-th column of G. To ensure the diagonal entries of Σ̂θ are ones, the upper triangular Cholesky

factor G must satisfy ∥gd∥= 1. Based on Σ̂∗
θ

, we can use the following procedure to obtain Ĝ:

ĝdd′ =



0 if d > d′,

1 if d = d′ = 1,

zdd′ if d = 1 < d′,

zdd′gd−1,d′(1− z2
d−1,d′)1/2 if 1 < d ≤ d′.

(42)

Here, zdd′ = tanh(σ̂∗
dd′). After obtaining Ĝ, we compute Σ̂θ based on Σ̂θ = Ĝ⊤Ĝ.

We summarize the above Monte Carlo EM Algorithm for the HO-GRCDM in Algorithm 2.

Remark 1. Many HO-GRCDMs may have additional dispersion parameters. In these cases, ad-

ditional steps are needed in the M step to update these parameters explicitly or with the help of

existing optimizers. For example, in the log-normal CDM case, there are additional standard de-

viation parameters γ j that need to be estimated. After obtaining estimates for all β j, the γ j can be

solved explicitly by γ j = ∑
N
i=1 ∑α∈{0,1}K(Ri j −ν j,α)/(N ·2K) in each M step.

Remark 2. The Monte Carlo EM algorithm offers flexibility in handling complex models straight-

forwardly while achieving high accuracy. However, it is known for its relatively high computa-

tional cost, especially when the sample size N is large, due to the necessity for a sufficient number

of Monte Carlo samples. We are pleased to report that this issue has a rather negligible effect
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Algorithm 2 Monte Carlo EM Algorithm for the HO-GRCDM

Input: Response matrix R, number of binary latent attributes K, Monte Carlo sample size Mt for
t = 1,2, . . ., latent layer Q-matrix Q(H), initial values β (0), λ̂(0), and Σ̂

(0)
θ

.
While not converged do:
E-Step:

E1. For m = 1,2, . . . ,Mt and α ∈ {0,1}K , sample θ (m,α) from P(θ |A = α; λ̂(t−1),Σ
(t−1)
θ

) according to
Algorithm 2.

E2. Use the draws obtained in step (E1) to approximate the expectations
Eθi

[
l2(i,α)|Ai = α, λ̂(t−1),Σ̂

(t−1)
θ

]
and Eθi

[
l3(i)|Ai = α, λ̂(t−1),Σ̂

(t−1)
θ

]
according to Equations

(30)-(31).

E3. Substitute the expectations computed in step (E2) into the corresponding parts in Equations
(25)-(27) to compute Q1

(t)(β ), Q2
(t)(λ), and Q3

(t)(Σθ ).

M-Step:

M1. Apply the coordinate ascent algorithm to solve the optimization problem in Equations (38) and (39)
to obtain β̂ (t) and λ̂(t), and solve for the other model parameters if there are any.

M2. Follow the procedure described in Section 4.2.2 to compute Σ̂
(t)
θ

.

M3. Estimate the Q-matrix based on β̂ (t), as discussed in the Q-matrix estimation section.

Output: Updated parameters β̂ (t), λ̂(t), and Σ̂
(t)
θ

, along with an estimated Q-matrix.

on our proposed Algorithm 2. Instead of approximating the entire expectation of the E-step using

Monte Carlo integration, only the inner expectation requires approximation. Moreover, only 2K

expectations need to be estimated, regardless of the sample size. For instance, even with a rel-

atively large K = 8, only 256 integrals need to be estimated. This significantly differs from the

traditional estimation approaches in IRT models, where the computational cost of Monte Carlo

sampling would notably increase as the sample size N grows.

Remark 3. Initialization is an important issue for the EM algorithm. An efficient approach is to

use the SVD-based algorithm to obtain the initial values (Chen et al., 2019; Zhang et al., 2020).

This method leverages the low-rank nature of the design matrix to capture the principal compo-

nents of the data, thus providing stable and informative starting points for the iterative fitting

process. The detailed procedures for initialization are presented in the Supplementary Material.
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5 Simulation Studies

In this section, we conduct extensive simulation studies to investigate the performance of the pro-

posed MCEM algorithm for HO-GRCDMs. We consider three sample sizes: N = 500, 1000, and

2000, under the configuration (J,K,D) = (30,7,3). We examine three types of models for the

bottom data layer: the main-effect model, the all-effect model, and the DINA model. Within each

bottom-layer model category, three types of response models are considered: (a) Bernoulli CDM

for binary data, (b) Poisson CDM for count data, and (c) Lognormal CDM for continuous data.

In the Bernoulli CDM case, the logistic distribution is used to model the probability of a correct

response. Since both the Lognormal and Gamma distribution can be used to model positive con-

tinuous responses, we consider the Lognormal distribution as a representative case and postpone

the simulation under the Gamma distribution to the Supplementary Material. The distributions for

each model are detailed in Equations (4), (5), and (7). The first K items are serve as anchor items.

The bottom layer Q-matrix, Q30×7, is shown in Equation (43). For each bottom layer model, we

explore two higher-order layer structures: the subscale structure and the bifactor structure. The true

slope coefficients for the higher-order layer are also presented in Equation (43). The unconstrained

parameters in Σθ are sampled from a uniform distribution U(0.1,0.3).

It is straightforward to verify that the above models are identifiable. Specifically, Q30×7 satisfies

the conditions in Proposition 1, and λ1 and λ2 satisfy the the conditions in Propositions 2 and 3,
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respectively. Therefore, the identifiability conditions in Theorem 1 are satisfied.

Q30×7 =



I7

I7

I7

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 1



, λsubscale
1 =



1.5 0.0 0.0

1.5 0.0 0.0

0.0 1.2 0.0

0.0 1.2 0.0

0.0 0.0 1.0

0.0 0.0 1.0

0.0 0.0 1.0


, λbifactor

1 =



0.5 0.6 0.0

0.5 0.6 0.0

0.8 0.7 0.0

0.8 0.7 0.0

1.0 0.0 0.9

1.0 0.0 0.9

1.0 0.0 0.9


.

(43)

The Monte Carlo sample size Mt for sampling θ is determined by the formula Mt = s0+s1 ·(t−1).

In this study, we set s0 = s1 = 5, meaning five samples are simulated in the first iteration, with the

number of samples increasing by five in each subsequent iteration. The convergence criterion is

max∥η̂(t)− η̂(t−1)∥< 0.04 for three successive iterations. Initialization is implemented using the

SVD-based algorithm mentioned in Remark 3 and detailed in the Supplementary Material. The

coordinate ascent part in our algorithm is conducted by using the R package glmnet (Hastie et al.,

2021). For each model fitting, we apply the proposed MCEM algorithm multiple times across

a sequence of regularization parameters s, which vary across distributions and are listed in the

Supplementary Material. The regularization parameter that produces the smallest BIC value is

then selected to finalize the model fitting.

5.1 Simulations for Main-Effect HO-GRCDMs

For the main-effect models, we set the coefficients β
j

k in the same way as Lee and Gu (2024b):

β
j

0 = c0, β
j

k =
c1

∑
K
k=1 q jk

, ∀ j ∈ [J], k ∈ [K],
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where (c0,c1) are two constants, set to (-1,3) for the Lognormal-CDM, (0.5,1) for the Poisson-

CDM, and (-2,4) for the Bernoulli-CDM. For the Lognormal-CDM, the dispersion parameter σ j is

set to 1 for all J items. 100 independent replications are conducted in each setting.

We report the estimation accuracy for the continuous parameters in Table 1, by displaying

the Root Mean Squared Errors (RMSE) and absolute biases (aBias). Note that the differences in

the bottom layer parametric families may lead to results that are not directly comparable across

these models. In particular, the Bernoulli model adopts a nonlinear parametrization for the correct

response probability, so its probability parameters are on a different scale than those under other

models. As shown in Table 1, the estimation accuracy for all the parameters improves as the

sample size increases. Furthermore, to examine the recovery of the discrete Q-matrix, we report

the proportion of correctly estimated rows and entries in Q in Table 12. It can be seen that the

estimation accuracy of Q is reasonably high and improves as the sample size grows. The simulation

results in Table 1 and Table 12 provide empirical verification of our identifiability results.

Model Higher-Order Structure N
RMSE aBias

β λ Σθ γ β λ Σθ γ

Lognormal

Subscale
500 0.170 0.107 0.064 0.030 0.153 0.085 0.053 0.024

1000 0.131 0.076 0.048 0.022 0.120 0.058 0.039 0.018
2000 0.111 0.058 0.040 0.015 0.105 0.052 0.034 0.013

Bifactor
500 0.166 0.240 0.178 0.032 0.148 0.188 0.164 0.026

1000 0.129 0.097 0.172 0.023 0.118 0.156 0.159 0.018
2000 0.109 0.063 0.158 0.011 0.102 0.130 0.143 0.013

Poisson

Subscale
500 0.265 0.345 0.164 – 0.220 0.274 0.135 –

1000 0.221 0.232 0.115 – 0.189 0.188 0.092 –
2000 0.199 0.191 0.096 – 0.173 0.154 0.074 –

Bifactor
500 0.238 0.451 0.162 – 0.201 0.348 0.146 –

1000 0.209 0.328 0.130 – 0.182 0.263 0.119 –
2000 0.190 0.278 0.122 – 0.172 0.227 0.113 –

Bernoulli

Subscale
500 0.399 0.176 0.072 – 0.351 0.135 0.056 –

1000 0.348 0.086 0.051 – 0.316 0.067 0.042 –
2000 0.313 0.083 0.041 – 0.294 0.058 0.032 –

Bifactor
500 0.389 0.279 0.147 – 0.340 0.200 0.124 –

1000 0.344 0.189 0.132 – 0.312 0.149 0.110 –
2000 0.305 0.167 0.106 – 0.285 0.131 0.102 –

Table 1: RMSE and aBias for the Main-Effect HO-GRCDM
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Higher-Order Structure Lognormal Poisson Bernoulli

N 500 1000 2000 500 1000 2000 500 1000 2000

Subscale PR 0.807 0.897 0.967 0.805 0.914 0.957 0.644 0.854 0.951
PE 0.970 0.985 0.994 0.958 0.982 0.956 0.937 0.977 0.993

Bifactor PR 0.767 0.854 0.945 0.811 0.918 0.969 0.647 0.840 0.933
PE 0.960 0.977 0.992 0.961 0.983 0.992 0.937 0.974 0.990

Table 2: Proportion of Correctly Recovered Rows (PR) and Entries (PE) in Q-matrix for the Main-
Effect HO-GRCDM.

5.2 Simulations for All-Effect HO-GRCDMs

For the all-effect models, we set the true coefficients β
j

k as β
j

0 = c0, and

β
j

S =

 c1

2|K j | ∏l∈S q j,l = 1

0 ∏l∈S q j,l = 0

where K j =
{

k ∈ [K]; q jk = 1
}

, S ⊆ [K]\ /0. Here, c0 and c1 are the same constants that we have

defined in Section 5.1. Similar to the main-effect model scenario, we apply the proposed MCEM

algorithm to fit each model and conduct 100 independent replications for each setting. RMSE and

aBias are computed for evaluating estimation accuracy.

These simulation results are presented in Table 3. As shown in Table 3, the estimation accuracy

for all parameters improves as the sample size increases. Compared to the main-effect case, the

accuracy of the continuous parameters is lower, which is unsurprising given the significantly larger

number of parameters in this case. To examine the recovery of Q, we report the proportion of

correctly estimated rows and entries in Q in Table 4. As explained in the Q estimation section,

following the strict rule tends to yield an onverly dense matrix. Instead, we identify the j-th row

of Q based on the largest non-zero interaction coefficient for item j. The estimation accuracy of

Q improves as the sample size grows. In fact, the recovery of Q is better than in the main-effect

case. This is likely due to the larger number of parameters in the all-effect case, which may help to

recover the Q-matrix by providing more information about the dependence structure between the

items and the attributes.
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Model Higher-Order Structure N
RMSE aBias

β λ Σθ γ β λ Σθ γ

Lognormal

Subscale
500 0.211 0.159 0.059 0.031 0.192 0.127 0.047 0.025
1000 0.152 0.109 0.046 0.023 0.137 0.084 0.038 0.019
2000 0.116 0.083 0.042 0.016 0.106 0.066 0.032 0.013

Bifactor
500 0.191 0.209 0.143 0.031 0.170 0.167 0.131 0.025
1000 0.140 0.150 0.141 0.021 0.125 0.120 0.129 0.017
2000 0.114 0.123 0.126 0.017 0.104 0.095 0.109 0.013

Poisson

Subscale
500 0.310 0.258 0.072 – 0.292 0.199 0.059 –
1000 0.280 0.174 0.054 – 0.272 0.139 0.044 –
2000 0.270 0.134 0.045 – 0.264 0.113 0.037 –

Bifactor
500 0.310 0.233 0.126 – 0.293 0.187 0.110 –
1000 0.282 0.196 0.122 – 0.274 0.159 0.109 –
2000 0.270 0.160 0.098 – 0.266 0.133 0.080 –

Bernoulli

Subscale
500 0.481 0.326 0.064 – 0.416 0.185 0.053 –
1000 0.388 0.154 0.051 – 0.346 0.105 0.038 –
2000 0.335 0.062 0.040 – 0.304 0.051 0.033 –

Bifactor
500 0.479 0.355 0.171 – 0.414 0.279 0.149 –
1000 0.393 0.191 0.106 – 0.349 0.152 0.103 –
2000 0.323 0.178 0.102 – 0.296 0.140 0.097 –

Table 3: RMSE and aBias for the All-Effect HO-GRCDM

Higher-Order Structure
Lognormal Poisson Bernoulli

N 500 1000 2000 500 1000 2000 500 1000 2000

Subscale
PR 0.942 0.958 0.982 0.883 0.923 0.972 0.827 0.953 0.992
PE 0.991 0.994 0.997 0.982 0.988 0.996 0.972 0.993 0.999

Bifactor
PR 0.928 0.945 0.983 0.850 0.952 0.975 0.837 0.945 0.975
PE 0.989 0.992 0.998 0.983 0.994 0.996 0.974 0.992 0.996

Table 4: Proportion of Correctly Recovered Rows (PR) and Entries (PE) in Q-matrix for the All-
Effect HO-GRCDM.

5.3 Simulations for DINA HO-GRCDMs

For the DINA models, we set the true coefficients β
j

k as β
j

0 = c0, and

β
j

S =


c1 if S = K j,

0 otherwise.

As mentioned in section 2.1, DINA model can be regarded as a special case of the all-effect model,

meaning that we can use the same estimation procedure with all-effect model to estimate DINA
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model. Here, we set c0 and c1 same as Section 5.1, and implement the MCEM algorithm.

These simulation results are presented in Table 5. As demonstrated in Table 5, the estimation

accuracy for all parameters improves as the sample size increases. Furthermore, to examine the

recovery of Q, we report the proportion of correctly estimated rows and entries in Q in Table

6. Since there should be only one non-zero coefficient per item, we identify the j-th row of Q

based on the largest non-zero interaction coefficient for item j. Again, the estimation accuracy of

Q improves as the sample size grows. The results are similar to those in the all-effect case. In

the confirmatory case, the DINA model has fewer parameters than the all-effect model, making it

easier to estimate. However, in the exploratory case, it is fitted as an all-effect model, leading to

similar computational cost. This may explain the comparable estimation accuracy in the two cases.

Model Higher-Order Structure N
RMSE aBias

β λ Σθ γ β λ Σθ γ

Lognormal

Subscale
500 0.205 0.185 0.064 0.031 0.189 0.121 0.050 0.025
1000 0.146 0.145 0.048 0.023 0.135 0.106 0.037 0.019
2000 0.113 0.087 0.037 0.016 0.106 0.080 0.027 0.013

Bifactor
500 0.204 0.218 0.171 0.033 0.189 0.168 0.159 0.027
1000 0.150 0.158 0.151 0.022 0.138 0.126 0.141 0.018
2000 0.117 0.143 0.150 0.016 0.111 0.118 0.135 0.013

Poisson

Subscale
500 0.387 0.196 0.081 – 0.377 0.163 0.067 –
1000 0.359 0.186 0.080 – 0.353 0.135 0.054 –
2000 0.338 0.143 0.065 – 0.335 0.098 0.048 –

Bifactor
500 0.391 0.206 0.131 – 0.380 0.166 0.120 –
1000 0.357 0.152 0.130 – 0.352 0.124 0.117 –
2000 0.337 0.129 0.127 – 0.334 0.102 0.114 –

Bernoulli

Subscale
500 0.458 0.322 0.073 – 0.403 0.180 0.057 –
1000 0.348 0.129 0.055 – 0.316 0.101 0.042 –
2000 0.320 0.109 0.036 – 0.300 0.051 0.028 –

Bifactor
500 0.472 0.361 0.162 – 0.417 0.281 0.142 –
1000 0.383 0.208 0.158 – 0.353 0.162 0.136 –
2000 0.324 0.191 0.108 – 0.305 0.155 0.109 –

Table 5: RMSE and aBias for the DINA HO-GRCDM
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Higher-Order Structure
Lognormal Poission Bernoulli

N 500 1000 2000 500 1000 2000 500 1000 2000

Subscale
PR 0.898 0.915 0.947 0.928 0.955 0.975 0.790 0.890 0.975
PE 0.985 0.987 0.992 0.990 0.993 0.996 0.968 0.983 0.996

Bifactor
PR 0.888 0.908 0.942 0.943 0.963 0.983 0.784 0.897 0.950
PE 0.984 0.986 0.991 0.991 0.995 0.998 0.966 0.985 0.993

Table 6: Proportion of Correctly Recovered Rows (PR) and Entries (PE) in Q-matrix for the DINA
HO-GRCDM.

6 Real Data Analysis

In this section, we demonstrate the application of the HO-GRCDM to response time data from

the 2019 TIMSS mathematics assessment (Fishbein et al., 2021). We analyze the response time

data collected from United Arab Emirates students responding to booklet 1 in the eighth-grade

math assessment1. This dataset includes the time spent on each item screen (in seconds) by 1599

students on 28 items within a total exam time of 45 minutes. Data points with log response times

less than 0 or greater than 6 are regarded as outliers, potentially resulting from students’ random

guessing, running out of time, or taking breaks during the exam. These outliers are considered

missing data (NA), and the corresponding observations are deleted, resulting in a total of 1163

observations. The data are then transformed from seconds to minutes. Table 6 summarizes some

descriptive information about the items, including item type, item description, and the slope and

location parameters obtained when fitting the two parameter item response model (2PL).

The TIMSS 2019 math assessment is designed to examine three cognitive skills (Knowing,

Applying, and Reasoning) and four content skills (Number, Algebra, Geometry, and Data and

Probability), where each item specified to measure one cognitive skill and one content skill. The

assessment also provides a provisional Q-matrix and Q(H)-matrix shown in Tables 8-9. We apply

the developed MCEM algorithm to fit a main-effect HO-GRCDM with a subscale higher-order

structure (using the provided Q(H)-matrix) to the dataset. We elaborate more regarding the rationale

for the choosing the structure of the HO-GRCDM in subsequent paragraphs. Here, note that we

1The data and the listed descriptive information are available from https://timssandpirls.bc.edu/

timss2019/.
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work under the exploratory framework with an unknown Q-matrix, and do not use any information

in the provisional Q-matrix. This is because our purpose is to derive findings on the test structure

and item characteristics that might provide valuable insights for test developers by assessing the

validity of the test design Q-matrix.

Table 7: Descriptive item information. In the second column, MC denotes multiple choice items
and CR denotes constructed response items.

Item Item Type Label Slope Location

1 MC Octagon with equivalent shading 1.65 0.55

2 CR Time when Pat finishes last lap 1.28 -0.26

3 MC Multiples of 3 1.20 0.68

4 CR Convert decimal to a fraction 1.24 0.39

5 MC Expression for area of rectangle 1.32 0.67

6 MC Expression with exponents of y 1.01 0.11

7 CR Number of matches for figure 10 0.86 0.29

8 MC Graph of y = 2x 1.24 1.62

9 MC Rotation and reflection 1.13 1.59

10 MC Surface area of the prism 1.50 0.99

11 MC Value of angle x outside triangle 1.20 0.27

12 MC Number of balls in a bag 1.19 -0.10

13 MC Liv’s smartphone use 1.91 0.76

14 CR Statements for all values of integer a 0.74 1.04

15 MC Arrow to show 5/12 on number line 1.49 0.74

16 CR Value of fraction X in square 1.32 1.13

17 CR Number of blue beads on bracelet 0.74 0.07

18 MC Value of 2(6x - 3y) 1.29 0.09

19 MC Expression equivalent to 2y + 6xy2 0.86 0.66

20 CR Formula for stopping distance 1.16 0.66

21 CR Value of x given perimeter of triangle ABC 1.60 0.92

22 MC Additional point on a straight line 1.25 0.75

23 CR Value of angle x in a quadrilateral 1.31 -0.15

24 CR Methods of folding paper 0.50 0.33

25 CR Coordinates to complete KLMN 1.23 0.72

26 CR Mean temperature for 5 days 1.51 0.69

27 CR Best graph for town information 1.57 0.14

28 CR Bar graph of newspaper sales 1.05 1.47

Note: The Slope and Location refer to the item slope and location parameters obtained by fitting an item response model.
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Item Number Algebra Geometry Data and Prob. Knowing Applying Reasoning
1 1 0 0 0 1 0 0
2 1 0 0 0 0 1 0
3 1 0 0 0 0 0 1
4 1 0 0 0 1 0 0
5 0 1 0 0 0 1 0
6 0 1 0 0 1 0 0
7 0 1 0 0 0 0 1
8 0 1 0 0 0 1 0
9 0 0 1 0 0 0 1

10 0 0 1 0 0 0 1
11 0 0 1 0 0 1 0
12 0 0 0 1 0 1 0
13 0 0 0 1 0 1 0
14 1 0 0 0 1 0 0
15 1 0 0 0 0 1 0
16 1 0 0 0 0 0 1
17 1 0 0 0 1 0 0
18 0 1 0 0 1 0 0
19 0 1 0 0 1 0 0
20 0 1 0 0 0 1 0
21 0 1 0 0 0 1 0
22 0 1 0 0 0 1 0
23 0 0 1 0 0 1 0
24 0 0 1 0 0 0 1
25 0 0 1 0 0 0 1
26 0 0 0 1 1 0 0
27 0 0 0 1 0 1 0
28 0 0 0 1 0 0 1

Table 8: Q-matrix of the TIMSS 2019 data set

Number Algebra Geometry Data and Prob. Knowing Applying Reasoning

Content 1 1 1 1 0 0 0
Cognitive 0 0 0 0 1 1 1

Table 9: Q(H)⊤ matrix of the TIMSS 2019 data set

Regarding the choice of parametric families to model the response time, the log-normal distri-

bution and Gamma distribution are two commonly used distributions (De Boeck and Jeon, 2019;

Maris, 1993; Klein Entink et al., 2009; Van der Linden, 2006). The log-normal model is often used

when the logarithm of the response times follows a normal distribution, while the Gamma model is

suitable for modeling positive continuous variables with skewed distributions. To choose between

these two models, we first fit both models to the data and compute their BIC values. The obtained

BIC values are 73165.46 for the Gamma model and 86664.8 for the log-normal model. Further-

more, we plot the probability histogram for the response time of each item and fit a density curve

using the spline method. Using the estimated parameters obtained by fitting the log-normal and

Gamma HO-GRCDM, their corresponding density curves are also plotted. We show plots for the

last 10 items (items 19-28) in Figure 1 and present plots for all items in Supplementary Material

E. By examining the histogram and comparing the density curves, we found that the response time

variables for most items are right-skewed, and the Gamma model’s curve (red line) overlaps more

with the empirical density (blue line) than the log-normal model (green line), indicating that the
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Gamma model has a better fit. Therefore, we use the Gamma distribution for the response time

to fit a main-effect HO-GRCDM. We conduct an additional simulation study in Supplementary

Material D to investigate the performance of the MCEM algorithm for estimating the main-effect

HO-GRCDM with a Gamma distribution.

We also comment on the choice of the measurement model and the latent layer structure for our

HO-GRCDM. It is common to use the main-effect models to understand response times (Sternberg,

1980; Maris, 1993; De Boeck and Jeon, 2019; Lee and Gu, 2024b). Lee and Gu (2024b) discusses

the rationale for adopting the additive model assumption in more detail. As for the high-order

layer, rather than focusing on assessing general cognitive ability, our primary goal is to capture

fine-grained distinctions between subskills, for which the subscale model is more appropriate.

Figure 2(a) presents heatmap of the estimated bottom-layer parameters. The fitted model re-

veals a sparse structure of bottom-layer coefficients—only three columns (the 1st, 4th, and 6th

columns) have non-zero coefficients. In addition, there is an estimated positive correlation of 0.35

between the cognitive skill and the content skill. Using the estimated parameters, we compute

P(Ai = α|Ri; β̂ , λ̂,Σ̂θ ) for each student, selecting the α ∈ {0,1}K with the highest value as the

estimate of their attribute profile. To explore the sparse structure and explain the three attributes

with non-zero coefficients, we compute correlations among the seven attributes based on the es-

timated attributes of students and show the results in Figure 2(b). The first observation from the

correlation plot is that the three cognitive attributes, attributes 5-7, are extremely highly correlated,

with correlations up to 0.98. There are also high correlations among the four content attributes

(attributes 1-4), with a correlation of 0.98 between attributes 1 and 3, and a correlation of 0.76

between attributes 2 and 4. This indicates that the content attributes may further divided into two

groups: (1, 3) and (2, 4). Additionally, the correlations between one cognitive attribute and another

content attribute are much smaller than that from content attributes or cognitive attributes.

The high correlations in attribute groups (1,3), (2,4), and (5,6,7) indicate that attributes within

the same group are hard to distinguish. This is also reflected in the estimated bottom-layer coeffi-

cients β : only one attribute in each group has non-zero coefficients. The 6th column coefficients

can be regarded as the coefficients for all of the cognitive skills: Knowing, Reasoning, and Ap-
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plying. For attributes 1-4, we found that only items 1-15 have non-zero coefficients on the first

attribute, with the majority measuring “Number” and “Algebra”. Items 24-28 have non-zero co-

efficients for attribute 4, and these items measure either “Geometry” or “Data and Probability”.

These observations suggest that attribute groups (1,3), (2,4), and (5,6,7) correspond to (Number,

Algebra), (Geometry, Data and Probability), and (Knowing, Reasoning, Applying), respectively.

The insights into the relationships among the attributes are both intuitive and interpretable.

However, the estimated coefficients do not align with the test-design based Q-matrix in Table 8. A

similar dataset was analyzed in Lee and Gu (2024b) using the designed Q-matrix, where their re-

sults revealed interesting observations about the intrinsic dependence among the attributes, which

motivated our attempt to apply the HO-GRCDM to the TIMSS data. In this paper, our main focus

is on developing a new modeling framework, providing identification results, and proposing an

efficient algorithm for fitting this model, which together form a comprehensive toolkit for practi-

tioners. We encourage applied researchers to design tests specifically tailored for HO-GRCDMs

in the future, for which our methodology is well-suited and could perform optimally.
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Figure 1: TIMSS data analysis. Probability Histogram and Fitted Density Curves (Empirical Den-
sity, Gamma Model, and Log-Normal Model) for Response Time Data (in minutes).
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Figure 2: TIMSS data analysis. (a): Heatmap for Estimated Bottom-Layer Parameters. (b): Cor-
relation Plot of the Estimated Latent Attributes.

7 Discussion

We have proposed a general modeling framework, HO-GRCDM, for modeling CDMs with general

responses and a higher-order structure. This framework features high flexibility in (1) addressing

various types of response data, (2) adapting to a variety of measurement models, and (3) consid-

ering an exploratory settings with an unknown Q-matrix. Furthermore, our models have a rich

representational power in its hierarchical structure to hunt for higher-order cognitive information.

We provide interpretable identifiability conditions in terms of the Q and Q(H) matrices that ensure

the validity and accuracy of model fitting. The probit link used for the higher-order layer facilitates

our identifiability theory as well as the development of an efficient MCEM algorithm for parame-

ter estimation. Compared to existing MCMC and EM methods, our MCEM algorithm has lower

computational complexity due to an explicit conditional expectation formula for α and an efficient

sampler for θ . Extensive simulation studies under various response types and measurement models

are conducted to examine the efficiency of the proposed algorithm.

There are several promising directions for future work that build upon the HO-GRCDM frame-
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work. First, incorporating more than two layers would help explore deeper and more nuanced

diagnostic information. Gu (2024) proposed a new family of DeepCDMs featuring multiple, po-

tentially deep, entirely discrete latent layers for cognitive diagnosis. However, that work focuses

on binary response variables and binary latent variables. It would be interesting to develop a frame-

work applicable to general responses and incorporate multiple discrete latent layers. Second, while

it is typical to consider binary attributes in CDMs, extending them to polytomous attributes can

provide a more nuanced representation of latent traits or skills (von Davier, 2005; Karelitz, 2004;

Chen and de la Torre, 2013). Third, it is worth considering a fully exploratory setting with both the

Q and Q(H) matrices being unknown. Investigating identifiability and estimation in this setting in

the future could provide further insights into cognitive processes and test design.

Supplementary Material. The Supplementary Material contains the proofs of the identifiability

results, the initialization strategy based on SVD, and additional details about the simulation studies

and real data analysis.

Funding. Yuqi Gu’s research is partially supported by the NSF grant DMS-2210796.

References
Arellano-Valle, R. B. and Azzalini, A. (2006). On the unification of families of skew-normal

distributions. Scandinavian Journal of Statistics, 33(3):561–574.
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Supplementary Material

This Supplementary Material is organized as follows. Section A includes the proofs of the

identifiability results. Section B presents the initialization strategy based on the singular value

decomposition. Section C and Section D provides some additional details for the simulation studies

and real data analysis, respectively.

A Proof of Identifiability Results

Proof of Proposition 2. We separate the arguments for sufficiency and necessity. Recall that for

each d, we assume that there exists a pivot row kd such that λ
kd
1,d > 0.

Sufficiency. We prove that the model is identifiable under the given condition. For each k ∈ [K], let

Zk denote the unique group that the kth item belongs to, and define δk :=
λ k

1,Zk√
1+(λ k

1,Zk
)2

. It is clear that

λ 7→ λ√
1+λ 2 is a one-to-one mapping. Hence, using Proposition 2 in Fang et al. (2021), it suffices

to show that one can uniquely recover δ = (δ1, . . . ,δK) and Σ, given the values

Cρ(k, l) =
λ k

1
⊤

Σλ l
1√

1+λ k
1
⊤

Σλ k
1

√
1+λ l

1
⊤

Σλ l
1

= σZkZl δkδl

for k ̸= l.

Fix any d. We first prove that δk for k ∈ Ld := {k ∈ [K] : Zk = d} can be identified. Let us first

consider the first scenario with Kd ≥ 3. For k ̸= l ∈ Ld , we have Zk = Zl = d. Because σdd = 1,

Cρ(k, l) simplifies into δkδl . Using the fact that δkd > 0 for the pivot row indexed by kd , we can

uniquely determine all δk for k ∈ Ld . To see this, one can simply take two additional indices

l ̸= m ∈ Ld and consider the equations

Cρ(kd, l) = δkd δl, Cρ(kd,m) = δkd δm, Cρ(l,m) = δlδm.

Next, we consider the case when Kd = 2 and σdd′ ̸= 0 for some d′ ̸= d. Since δkd′
̸= 0 and

σdd′ ̸= 0, one can recover the ratio of δks for k ∈ Ld = {kd,kd + 1} by computing the ratio of

Cρ(k,kd′) = σdd′δkδkd′
’s. Then, we can uniquely determine δk’s for k ∈ Ld using the value of
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Cρ(kd,kd +1) = δkd δkd+1.

Finally, it remains to recover the off-diagonal entries of Σ. But this directly follows by noting

that σdd′ =
Cρ (kd ,kd′)

δkd δkd′
for any d ̸= d′. Here, note that δkd δkd′

̸= 0 by the pivot row assumption, so the

fraction is always well-defined.

Necessity. We show that the conditions in the theorem are necessary for identifiability using the

proof by contradiction. Suppose an identifiable model has a d such that (1) Kd = 1 or (2) Kd = 2

and σdd′ = 0 for all d′ ̸= d. Under the first case with Kd = 1, the d-th group is only measured by the

kd-th item. Then, the parameters δkd ,{σdd′}d′ ̸=d are only reflected in Cρ(kd, l) = σdZl δkd δl’s, for

l ̸= kd . Even when assuming that the values of δl’s are known, this is a system of D−1 equations

with D unknowns, and does not exhibit a unique solution. Hence, we have a contradiction.

Next, we consider the case where Kd = 2 and σdd′ = 0 for all d′ ̸= d. Then, Ld = {kd,kd +1}.

Because σdd′ = 0 for d′ ̸= d, ρkl = 0 for all k ∈ Ld . Hence, δkd and δkd+1 needs to be determined

only by the value of Cρ(kd,kd +1) = δkd δkd+1. This is a single equation with two unknowns and

not solvable, giving the contradiction.

Proof of Theorem 1. The proof follows by sequentially applying the identifiability results for the

CDM and the higher-order probit model in a layerwise manner. First, we consider the bottom layer

CDM with parameters (π,β ,Q). Here, we are setting πα = P(A = α) by marginalizing out the

probit latent layer using eq. (14), as mentioned in the main text. Then, under conditions A and

B, Proposition 1 gives the identifiability of the CDM parameters (π,β ,Q), up to latent variable

permutation. As we assume the knowlege of anchor items for each latent variable, we can identify

these parameters without any trivial ambiguity.

Now, having identified π, we fully know the marginal distribution of the latent variables. Now,

we can apply Propositions 2 or 3 to identify the probit model parameters (Σθ ,λ0,λ1) and the proof

is complete. Note that the conditions for the probit parameters in Theorem 1 are exactly those in

Propositions 2 or 3.
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B Initialization Procedure for Simulation Study

B.1 Initialization of Bottom Layers for Various Response Distributions

We use singular value decomposition (SVD) to find the starting values for the bottom layers. We

first start at the Bernoulli model case and present Algorithm 1 for binary data as below.

Algorithm 3 Initialization for Bernoulli models

1. Input response data R = (ri j)N×J , number of attributes K, link function g, and truncation
parameter εN,J > 0.

2. Apply the singular value decomposition to R = ∑
J
j=1 τ ju jv⊤j , where τ1 ≥ τ2 ≥ . . .τJ are the

singular values, and u js and v js are left and right singular vectors, respectively.

3. Let X = (xi j)N×J = ∑
K̃
k=1 τkukv⊤k , where K̃ = max

{
K +1,arg maxk

{
τk ≥ 1.01

√
N
}}

4. Let X̂ = (x̂i j)N×J be defined as

x̂i j =


εN,J i f xi j < εN,J

xi j i f εN,J ≤ xi j ≤ 1− εN,J

1− εN,J i f xi j ≥ 1− εN,J

5. Let M̃ = (m̃i j)N×J , where m̃i j = g(x̂i j).

6. Let β̂0 = (β̂ 1
0 , . . . , β̂

J
0 ), where β̂

j
0 = (∑N

i=1 m̃i j)/N.

7. Apply singular value decomposition to M̂ = (m̃i j − β̂
j

0 )N×J to have M̂ = ∑
J
j=1 τ̂ jû jv̂⊤j ,

where τ̂1 ≥ τ̂2 ≥ . . . τ̂J are the singular values, and û js and v̂ js are left and right singular
vectors, respectively.

8. Apply varimax to V̂ = (v̂1, . . . , v̂J), and let Ṽ be the rotated version of V̂.

9. Output β̂ = (β
j

k )J×K = 1√
N
(τ̂1ṽ1, . . . , τ̂K ṽK), β̂0.

Algorithm 3 is based on the SVD-based estimator in Zhang et al. (2020). It utilizes SVD

twice. The initial application of SVD, followed by the inverse transformation (Steps 2-5), serves to

denoise and linearize the data. Subsequently, the second application of SVD (Steps 6-7) performs

PCA on the linearized data. For further discussions on the details, please refer to Zhang et al.

(2020) and Chatterjee (2015). The difference from Zhang et al. (2020) is that we apply the Varimax
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rotation to achieve a sparse and more interpretable factor loading structure in Step 8.

We utilize initialization for the HO-GRCDMs with other general responses based on a similar

idea to that of Algorithm 3. Firstly, the procedure is simpler and more directly for Transformed-

normal distribution. Let Ti j denote the transformed response variable. For example, Ti j = log(Ri j)

for log-normal distribution, Ti j = log(Ri j/(1−Ri j)) for logistic-normal distribution, and so forth.

After transforming Ri j to Ti j, there is no need to linearize data and truncate variable. The procedure

of finding the starting points for Transformed-normal distributions is listed in Algorithm 4.

Algorithm 4 Initialization for Transformed-Normal models

1. Input transformed response data T = (ti j)N×J , number of attributes K, link function g.

2. Apply the singular value decomposition to T = ∑
J
j=1 τ ju jv⊤j , where τ1 ≥ τ2 ≥ . . .τJ are the

singular values, and u js and v js are left and right singular vectors, respectively.

3. Let X = (xi j)N×J = ∑
K̃
k=1 τkukv⊤k , where K̃ = max

{
K +1,arg maxk

{
τk ≥ 1.01

√
N
}}

,
compute β̂

j
0 = (∑N

i=1 xi j)/N, j = 1, . . . ,J.

4. Apply varimax to V̂ = (v1, . . . ,vJ), and let Ṽ = (ṽ1, . . . , ṽJ) be the rotated version of V̂.

5. Output β̂ = (β
j

k )J×K = 1√
N
(τ1ṽ1, . . . ,τK ṽK), β̂0 = (β̂ 1

0 , . . . , β̂
J
0 ).

The initialization of Poisson models presented in Algorithm 5. It is similar to the Bernoulli

case. The difference is SVD is applied to transformed data Ti j = log(Ri j+1) instead of the original

data Ri j to help stabilize the variance and reduce skewness, then the data is transformed back to

the original scale in step 5.
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Algorithm 5 Initialization for Poisson models

1. Input response data R = (ri j)N×J , number of attributes K, link function g, and truncation
parameter εN,J = log(1).

2. Transforming the data R to T = (ti j)N×J , with ti j = log(Ri j +1). Apply the singular value
decomposition to T = ∑

J
j=1 τ ju jv⊤j , where τ1 ≥ τ2 ≥ . . .τJ are the singular values, and u js

and v js are left and right singular vectors, respectively.

3. Let X = (xi j)N×J = ∑
K̃
k=1 τkukv⊤k , where K̃ = max

{
K +1,arg maxk

{
τk ≥ 1.01

√
N
}}

4. Let X̂ = (x̂i j)N×J be defined as

x̂i j =

{
εN,J i f xi j < εN,J

xi j i f xi j ≥ εN,J

5. Let M̃ = (m̃i j)N×J , where m̃i j = exp(x̂i j)−1.

6. Compute β̂
j

0 = (∑N
i=1 m̃i j)/N, j = 1,2, . . . ,J.

7. Apply singular value decomposition to M̂ = (m̃i j − β̂
j

0 )N×J to have M̂ = ∑
J
j=1 τ̂ jû jv̂⊤j ,

where τ̂1 ≥ τ̂2 ≥ . . . τ̂J are the singular values, and û js and v̂ js are left and right singular
vectors, respectively.

8. Apply varimax to V̂ = (v̂1, . . . , v̂J), and let Ṽ = (ṽ1, . . . , ṽJ) be the rotated version of V̂.

9. Output β̂ = (β
j

k )J×K = 1√
N
(τ̂1ṽ1, . . . , τ̂K ṽK), β̂0 = (β̂ 1

0 , . . . , β̂
J
0 ).
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B.2 Initialization of Higher-Order Layers

Once the initial values for the bottom layer are obtained, the conditional probability P(R j
i |α,β j)

for each model can be computed according to Equations (5)-(9). For each α ∈ {0,1}K , we can

then compute the normalized likelihood of α,

Pα =
∏

N
i=1 P(R j

i |α,β j)

∑α ′ ∏
N
i=1 P(R j

i |α ′,β j)
, (44)

and use it as an initial approximation of πα, the marginal proportion of the attribute pattern α.

The approach of approximating marginals via normalized likelihood terms is well-recognized in

Bayesian inference (Gelman et al., 2013) and in probabilistic modeling (Bishop and Nasrabadi,

2006).

Using Pα as an initial approximation of πα, we generate a set of pseudo-attribute data according

to the distribution {Pα : α∈ {0,1}K}. This step aims to find appropriate starting points for λ1
k and

λ k
0 in the following model:

P(Ak = 1|θ ,λ1
k,λ k

0 ) = f−1(θ⊤
λ1

k +λ
k
0 ), k = 1, . . . ,K. (45)

Given the generated pseudo-attribute data Apseudo, this process is reduced to finding starting points

for an item factor analysis model with a probit link Φ(·), for which Algorithm 3 can be used to

obtain the initial values. The complete initialization procedure is given in Algorithm 6. Note that,

the sample size of Apseudo is flexible and is not necessary to align with the response data size N. A

larger number of Apseudo will help ensure that the pseudo-attribute data distribution is sufficiently

close to Pα , while a smaller number of Apseudo can render larger randomness but enable faster

computation if N is very large.
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Algorithm 6 Complete Initialization Procedure

1. Response data R = (ri j)N×J , number of attributes K, and link function g.

2. Based on the response type, apply one of Algorithms 3-5 accordingly to find initial values
of β̂ .

3. Compute Pα according to Equation (44).

4. Generate a set of pseudo-attribute data Apseudo according to Pα .

5. Impute Apseudo into Equation (45) and apply Algorithm 3 to get the initial values of λ ,
using the probit link function Φ(·).

6. Output the initial values β̂ and λ̂ .

C Simulation Study Details

C.1 Simulation Details

Table 10 presents the sequences of the tuning parameters s for different sample sizes and models in

the simulation study. The sequences are chosen to decrease as the sample size increases, following

the theoretical suggestion for regularization parameter selection Chen et al. (2015). The magnitude

of the sequences differs across models because of variations in the true parameter values.

Sample size Model
Lognormal Poisson Bernoulli Gamma

500 (0.10,0.12,0.14) (0.08,0.09,0.10) (0.022,0.023,0.024) (0.08,0.09,0.10)
1000 (0.08,0.10,0.12) (0.07,0.08,0.09) (0.020,0.021,0.022) (0.08,0.09,0.10)
2000 (0.06,0.08,0.10) (0.06,0.07,0.08) (0.018,0.019,0.020) (0.06,0.07,0.08)

Table 10: Sequences of tuning parameters s for different sample sizes and models (Lognormal,
Poisson, Bernoulli, and Gamma) used in the simulation study.
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Model Higher-Order Structure N RMSE aBias
β λ Σθ s β λ Σθ s

Gamma
Subscale

500 0.143 0.396 0.236 0.108 0.131 0.295 0.167 0.087
1000 0.102 0.244 0.159 0.094 0.091 0.171 0.089 0.080
2000 0.077 0.103 0.039 0.092 0.069 0.086 0.032 0.079

Bifactor
500 0.140 0.459 0.241 0.110 0.127 0.347 0.228 0.088

1000 0.094 0.326 0.196 0.102 0.084 0.250 0.186 0.085
2000 0.073 0.245 0.177 0.093 0.066 0.196 0.161 0.072

Table 11: RMSE and aBias for the Gamma Model within the Main-Effect HO-GRCDM

C.2 Additional Simulation for the Gamma Model within a Main-Effect

CDM

Like the other simulations conducted for main-effect models, we also set the coefficients β
j

k ac-

cording to:

β
j

0 = c0, β
j

k =
c1

∑
K
k=1 q jk

, ∀ j ∈ [J], k ∈ [K],

where (c0,c1) are two constants, set to (1, 2) for the Gamma-CDMs. These constants are chosen

to match the scale of parameters obtained in the Empirical Data Analysis section. The estimation

procedure is shown in Algorithm 1 in the paper. Here, the built-in R function optim is used to

estimate the shape parameters. The obtained RMSE and aBias are presented in Table 11, and the

proportion of correctly recovered rows and entries are shown in Table 12. It can be seen that the

estimation accuracy of both model parameters and Q improves as the sample size grows.

N 500 1000 2000

Subscale PR 0.727 0.787 0.854
PE 0.954 0.965 0.978

Bifactor PR 0.726 0.778 0.851
PE 0.955 0.965 0.977

Table 12: Proportion of Correctly Recovered Rows (PR) and Entries (PE) in Q-matrix for the
Gamma Model within the Main-Effect HO-GRCDM
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D Histograms and Fitted Density Curves for TIMSS Data
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Figure 3: Probability Histogram and Fitted Density Curves (Empirical Density, Gamma Model,
and Log-Normal Model) for Response Time Data (in Minutes) for Items 1-10.
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Figure 4: Probability Histogram and Fitted Density Curves (Empirical Density, Gamma Model,
and Log-Normal Model) for Response Time Data (in Minutes) for Items 11-20.
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Figure 5: Probability Histogram and Fitted Density Curves (Empirical Density, Gamma Model,
and Log-Normal Model) for Response Time Data (in Minutes) for Items 21-28.
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