
Generic Identifiability of the DINA Model and Blessing
of Latent Dependence

Yuqi Gu
Department of Statistics, Columbia University

Abstract

Cognitive Diagnostic Models are a powerful family of fine-grained discrete latent
variable models in psychometrics. Within this family, the DINA model is a funda-
mental and parsimonious one that has received significant attention. Similar to other
complex latent variable models, identifiability is an important issue for CDMs, includ-
ing the DINA model. Gu and Xu (Psychometrika, 84(2):468-483, 2019) established the
necessary and sufficient conditions for strict identifiability of the DINA model. Despite
being the strongest possible notion of identifiability, strict identifiability may impose
overly stringent requirements on designing the cognitive diagnostic tests. This work
studies a slightly weaker yet very useful notion, generic identifiability, which means
parameters are identifiable almost everywhere in the parameter space, excluding only
a negligible subset of measure zero. We propose transparent generic identifiability con-
ditions for the DINA model, relaxing existing conditions in nontrivial ways. Under
generic identifiability, we also explicitly characterize the forms of the measure-zero sets
where identifiability breaks down. In addition, we reveal an interesting blessing-of-
latent-dependence phenomenon under DINA – that is, dependence between the latent
attributes can restore identifiability under some otherwise unidentifiable Q-matrix de-
signs. The blessing of latent dependence provides useful practical implications and
reassurance for real-world designs of cognitive diagnostic assessments.

Keywords : Algebraic statistics; Blessing of dependence; Cognitive diagnostic model; DINA
model; Generic identifiability; Q-matrix.

1 Introduction

Cognitive Diagnostic Models (CDMs), or Diagnostic Classification Models (Rupp and Tem-

plin, 2008b; von Davier and Lee, 2019), are a popular family of discrete latent variable
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models widely used in educational and psychological measurement. Based on subjects’ mul-

tivariate responses to a set of items, one can use a CDM to infer the subjects’ fine-grained

latent attributes such as educational skills, personality traits, or mental disorders. The

key structure in a CDM is the so-called Q-matrix (Tatsuoka, 1983), which describes the

item-attribute dependence relations. Various CDMs have been developed with different as-

sumptions and modeling goals, among which the Deterministic Input Noisy output “And”

gate model (DINA model; Junker and Sijtsma, 2001) is a very popular and basic one. The

DINA model assumes a parsimonious conjunctive relationship among the latent attributes.

It also serves as a submodel for more general CDMs such as the general diagnostic model

(GDM; von Davier, 2008), the log linear CDM (LCDM; Henson et al., 2009), and the gener-

alized DINA model (GDINA; de la Torre, 2011). Research into the DINA model has received

enormous interest in the CDM literature (see, e.g. Rupp and Templin, 2008a; de la Torre,

2009; DeCarlo, 2011; Culpepper, 2015; Chen et al., 2018; Yamaguchi and Okada, 2020).

The rich modeling capacity of CDMs also comes with challenging identifiability issues.

Generally, a model is said to be identifiable if parameters are uniquely recoverable from

the observed data distribution. In CDMs, identifiability is the prerequisite for achieving

reliable and valid diagnostic assessment of individuals. Recently, there have been emerging

studies on the identifiability issues of CDMs. For general CDMs and their variants (which

cover DINA as a submodel), several works have proposed identifiability conditions under

different settings; see Xu (2017), Fang et al. (2019), Gu and Xu (2020), and Chen et al.

(2020). A commonality among the above results for general CDMs is that, a Q-matrix with

K columns needs to contain at least two identity submatrices IK for strict identifiability.

However, such a condition is much stronger than needed for identifying the DINA model,

which is a more parsimonious model yet exhibits rich combinatorial structures. In fact, Xu

and Zhang (2016) first showed that when the Q-matrix contains only one submatrix IK , the

DINA model parameters can still be identifiable. Later, Gu and Xu (2019) further proposed

sharp necessary and sufficient conditions for strict identifiability of DINA.

Concretely, strict identifiability means parameters are everywhere identifiable when com-
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ing from some parameter space T . Despite being the strongest possible identifiability no-

tion, strict identifiability may impose overly stringent conditions on the Q-matrix design. A

slightly weaker notion, generic identifiability, was introduced and studied by Allman et al.

(2009) for various statistical latent structure models. Instead of requiring parameters to be

everywhere identifiable in T , generic identifiability allows there to be a measure-zero subset

N ⊆ T where identifiability breaks down. Such a notion can often suffice for real data

analyses purposes (Allman et al., 2009) and hence is very useful in practice. For general

CDMs and their variants, Gu and Xu (2020) and Chen et al. (2020) have proposed certain

generic identifiability conditions. However, these generic identifiability conclusions are not

applicable to the DINA model; rather, they are developed mostly for variants of CDMs that

incorporate the main effects of latent attributes. It is an open problem whether generic

identifiability of the DINA model can be established under more practical conditions on the

Q-matrix. Addressing this problem will positively inform the design of cognitive diagnostic

assessments, and it may also inspire more efficient MCMC algorithms incorporating the more

relaxed identifiability constraints (e.g., Kern and Culpepper, 2020).

To better understand generic identifiability of the DINA model, first recall Gu and Xu

(2019)’s necessary and sufficient conditions for strict identifiability. These conditions can be

summarized as three requirements on the Q-matrix: Completeness (C), Repeated measure-

ment (R), and Distinctness (D); see Section 2.2 for details. The necessity of each of the

three conditions seemingly implies that they are equally important and that any violation of

them would lead to similar outcomes of non-identifiability. However, it turns out that this is

not the case. For example, the partial identifiability results in Gu and Xu (2020) imply that

when Condition (C) is violated, certain parameters under DINA are always not identifiable,

hence not generically identifiable. A natural question is, in violation of the minimal strict

identifiability conditions, when will those unidentifiable parameters occupy most or all of

the parameter space, and when will they only belong to a somewhat negligible subset of the

parameter space (i.e., generically identifiable)? The above two scenarios have vastly different

implications on the practice of Q-matrix designs. It is therefore highly desirable to clarify
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the different nature of the minimal strict identifiability conditions, and to further establish

weaker conditions for generic identifiability of the DINA model, if possible.

This work addresses the aforementioned questions and makes several contributions. First,

we clarify that certain minimal conditions for strict identifiability of DINA are impossible to

relax, in the sense that their violation will cause certain parameters to be nowhere identifiable

in their parameter space. Second, we establish that certain other conditions can indeed be

relaxed in nontrivial ways for generic identifiability to hold. The relaxed conditions only de-

pend on the Q-matrix structure and are easily checkable. Third, under generic identifiability,

we explicitly characterize the forms of those measure-zero non-identifiable setsN ’s, and show

that these sets correspond to certain independence statements about the latent attributes.

This means the statistical dependence between latent attributes can help restore identifiabil-

ity in some otherwise unidentifiable Q-matrix settings. Therefore, the generic identifiability

of DINA reveals an interesting blessing-of-latent-dependence phenomenon. This discovery

has useful practical implications on designing real-world cognitive diagnostic assessments.

The remainder of this paper is organized as follows. Section 2 introduces the setup of

the DINA model, reviews existing strict identifiability results, and motivates the study of

generic identifiability. Section 3 presents necessary conditions and sufficient conditions for

generic identifiability of the DINA model. Section 4 characterizes the forms of the measure-

zero non-identifiable subsets under generic identifiability, and reveals the blessing-of-latent-

dependence phenomenon. Section 5 provides some concluding remarks. The proofs of the

theoretical results are all included in the Supplementary Material.

2 Model Setup and Strict Identifiability Results

2.1 DINA Model

We next introduce the notation of the DINA model proposed in Junker and Sijtsma (2001).

Consider an educational assessment with J items designed to measure K binary latent

attributes. For a random subject in the population, denote the observed response vector
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containing the responses to J items by R = (R1, . . . , RJ)>, where Rj = 1 or 0 denotes the

correct or wrong response to the Jth item. Denote the random subject’s latent attribute

profile by A = (A1, . . . , AK)>, where Ak = 1 or 0 represents the presence or absence of the

kth latent attribute. Assume A follows a categorical distribution with proportion parameters

p = (pα; α ∈ {0, 1}K); that is, P(A = α) = pα for any binary pattern α ∈ {0, 1}K . The

proportion parameters p satisfy
∑
α∈{0,1}K pα = 1.

As for the distribution of the observables, assume a subject’s responses R1, . . . , RJ are

conditionally independent given his or her latent attribute profile A. The key structure in

specifying the conditional distribution of Rj’s is the so-called Q-matrix (Tatsuoka, 1983),

which is an item-attribute matrix with binary entries. Specifically, Q = (qj,k) has rows

indexed by the J items and columns by the K latent attributes, and qj,k = 1 indicates item

j requires or measures attribute k and qj,k = 0 otherwise. Denote the J row vectors of

Q by q1, . . . , qJ . For any positive integer L, denote [L] = {1, 2, . . . , L}. For two vectors

α ∈ {0, 1}K and qj, we write α � qj if αk ≥ qj,k for all k ∈ [K]; write α � qj otherwise.

The DINA model adopts the conjunctive assumption of attributes, defining an ideal response

ξj,α = 1(α � qj) =
∏K

k=1 α
qj,k
k for each item j and attribute pattern α. The ξj,α is a binary

indicator of whether pattern α masters all the attributes required by the jth item, i.e., being

capable of item j. The conditional distribution of Rj given A is then

P(Rj = 1 | A = α) = (1− sj)ξj,α + gj(1− ξj,α),

P(Rj = 0 | A = α) = 1− P(Rj = 1 | A = α).

In the above expression, sj = P(Rj = 1 | ξj,α = 1) denotes the slipping parameter, corre-

sponding to the probability of slipping the correct response despite being capable of item j.

And gj = P(Rj =| ξj,α = 0) denotes the guessing parameter, corresponding to the proba-

bility of guessing the correct response despite being incapable of item j. Collect all of the

slipping parameters by s = (sj : j ∈ [J ]) and the guessing parameters by g = (gj : j ∈ [J ]).

We also call s and g the item parameters.
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Under the aforementioned conditional independence assumption, the probability mass

function of the observed vector R under the DINA model is

P(R = r | s, g,p) =
∑

α∈{0,1}K
pα

J∏
j=1

(1− sj)rjξj,αg
rj(1−ξj,α)
j s

(1−rj)ξj,α
j (1− gj)(1−rj)(1−ξj,α), (1)

for any response pattern r ∈ {0, 1}J . This completes the specification of the DINA model,

with parameters (s, g,p).

2.2 Strict Identifiability of the DINA Model and Motivation for

Generic Identifiability

In the statistics literature, strict identifiability of a model generally means that the param-

eters are everywhere identifiable in some parameter space T . In the context of the DINA

model, define the parameter space for (s, g,p) as

T =
{

(s, g,p) : 1 ≥ 1− sj > gj ≥ 0 for all j ∈ [J ]; (2)

pα > 0 for all α ∈ {0, 1}K ,
∑

α∈{0,1}K
pα = 1.

}

First, the assumption 1− sj > gj in (2) has been adopted for DINA model in many existing

works (e.g., Culpepper, 2015; Xu and Zhang, 2016; Gu and Xu, 2019) to avoid trivial non-

identifiability issues. Its interpretation is that capable subjects of an item always have a

higher probability to give a correct response than incapable ones. Second, the assumption

pα > 0 for all α ∈ {0, 1}K in (2) was also made in Xu and Zhang (2016) and Gu and

Xu (2019) when deriving the C-R-D conditions, so it will make our new results in the

same context as theirs. If, however, certain “attribute hierarchy” (Templin and Bradshaw,

2014) exists in that mastering attribute Ak is the prerequisite for mastering A`, then any

latent attribute pattern α with αk = 0 but α` = 1 will have population proportion zero

pα = 0. In such settings, the sharp conditions for strict identifiability will differ from the

C-R-D conditions; see Gu and Xu (2022) for results in that context. In this work, we do
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not consider attribute hierarchies and focus on the same setting as Gu and Xu (2019) with

the parameter space in (2), where C-R-D conditions are necessary and sufficient for strict

identifiability. We define strict identifiability of the model parameters (s, g,p) as follows.

Definition 1 (Strict Identifiability). The parameters (s, g,p) in the DINA model (1) asso-

ciated with a Q-matrix are said to be strictly identifiable, if for any set of valid parameters

(s, g,p) ∈ T , there exist no (s̄, ḡ, p̄) 6= (s, g,p) such that

P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all r ∈ {0, 1}J .

We next summarize existing strict identifiability conditions for the DINA model. Xu and

Zhang (2016) proposed a set of sufficient conditions and a set of necessary conditions for

strict identifiability of DINA. Later, Gu and Xu (2019) bridged the gap between necessity and

sufficiency, and further proposed minimal conditions on the Q-matrix for strict identifiability.

Specifically, Gu and Xu (2019) proved that the following three conditions (C), (R), and (D)

are necessary and sufficient for strict identifiability of DINA.

(C) Completeness. A Q-matrix with K columns contains an identity submatrix IK after

some row permutation. Namely, the Q can be row-permuted to take the form of

Q =

 IK

Q∗

 . (3)

(R) Repeated-Measurement. Each of the K attributes is required by at least three items.

Namely, each column of Q contains at least three entries of “1”s.

(D) Distinctness. Assuming Condition (C) holds, after removing the identity submatrix IK

from Q, the remaining submatrix of Q contains K distinct column vectors. (Namely,

any two different columns of the submatrix Q∗ in (3) are distinct.)

We will refer to Gu and Xu (2019)’s above three conditions as C-R-D conditions for short.

We remark that in the CDM literature, the “completeness” of a Q-matrix is not defined with
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respect to the Q-matrix alone, but rather with respect to whether the Q-matrix under a

specific CDM can distinguish all the |{0, 1}K | = 2K possible attribute patterns (Chiu et al.,

2009). Under the DINA model, however, it is indeed the case that a Q-matrix is complete if

and only if it contains an identity submatrix IK (Chiu et al., 2009), so the name Completeness

Condition (C) here under the DINA model should not cause confusion.

At first sight, the necessity of each of the three conditions (C), (R), and (D) seemingly

implies that these conditions are of the same importance. One may conjecture that any

violation of the C-R-D conditions would lead to the same unidentifiable outcome. However,

it turns out that this is not the case. In fact, in violation of some of the C-R-D conditions,

certain parameters are unidentifiable everywhere in their parameter space; while in violation

of some others, those unidentifiable parameters only occupy a somewhat negligible measure-

zero subset of the parameter space. The above two scenarios have vastly different implications

on the practice of Q-matrix designs. The latter scenario of N having measure zero is much

more benign and often suffices for real data analyses purposes; this is generally called generic

identifiability in the statistics literature (Allman et al., 2009). The next section will focus

on developing generic identifiability results for the DINA model and delineate the different

nature of the C-R-D conditions.

3 Generic Identifiability: Necessary Conditions and

Sufficient Conditions

In this section, we consider whether the C-R-D conditions can be relaxed for generic identi-

fiability of the DINA model; and if possible, how to relax them. We first define the concept

of generic identifiability in the context of the DINA model.

Definition 2 (Generic Identifiability). The parameters (s, g,p) in the DINA model (1)

associated with a Q-matrix are said to be generically identifiable if the following holds. There

exists a subset N of the parameter space T defined in (2) such that: (a) N has measure zero

with respect to the Lebesgue measure on T ; and (b) for any set of parameters (s, g,p) ∈ T \N ,
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there exist no (s̄, ḡ, p̄) 6= (s, g,p) such that

P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all r ∈ {0, 1}J .

The concept of generic identifiability was introduced and popularized by Allman et al.

(2009) in the statistics literature. As the definition suggests, in a generically identifiable

model, identifiability can only break down in a negligible subset N of the parameter space, so

that parameter estimation and inference is still meaningful. Therefore, generic identifiability

often suffices for real data analyses purposes and is very useful in practice.

3.1 Necessary Conditions for Generic Identifiability

Next, we first characterize two necessary conditions for generic identifiability. Namely, our

results will delineate what conditions out of the C-R-D conditions cannot be relaxed for

parameters to be identifiable almost everywhere in the parameter space.

Proposition 1 (Violation of the Completeness Condition (C)). Under the DINA model, if

the Q-matrix violates Condition (C), then certain proportion parameters pα’s are nowhere

identifiable in their parameter space and generic identifiability fails to hold.

In Proposition 1, “nowhere identifiable in their parameter space” means that regardless

of where in the parameter space T these parameters come from, they are always not identi-

fiable from the observed data distribution. This conclusion is a corollary from the p-partial

identifiability results in Gu and Xu (2020). We next elaborate more on Proposition 1. Recall

the definition of the ideal response ξj,α =
∏K

k=1 α
qj,k
k , and define ξ:,α = (ξ1,α, ξ2,α, . . . , ξJ,α)>

as the ideal response vector for latent pattern α across all the J items. For any two latent

patterns α,β ∈ {0, 1}K , if ξ:,α = ξ:,β, then the definition of the DINA model in (1) implies

P(R = r | A = α, s, g) =
J∏
j=1

(1− sj)rjξj,αg
rj(1−ξj,α)
j s

(1−rj)ξj,α
j (1− gj)(1−rj)(1−ξj,α)
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=
J∏
j=1

(1− sj)rjξj,βg
rj(1−ξj,β)
j s

(1−rj)ξj,β
j (1− gj)(1−rj)(1−ξj,β)

= P(R = r | A = β, s, g).

The above equality means the observed R depends on the latent A only through the ideal

response vector ξ:,A, so we can alternatively write P(R = r | A = α, s, g) in an equivalent

form as P(R = r | ξ:,A = ξ:,α, s, g). With this observation, we can further rewrite the

probability mass function of R as

P(R = r | s, g,p) =
∑

α∈{0,1}K
pα · P(R = r | A = α, s, g)

=
∑

α∈{0,1}K
pα · P(R = r | ξ:,A = ξ:,α, s, g)

=
∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pβ

)
P(R = r | ξ:,A = ξ:,β, s, g), (4)

where R ⊆ {0, 1}K represents a set of the representative latent patterns, such that {ξ:,α :

α ∈ R} contains mutually distinct vectors and also covers all the possible ideal response

vectors. Eq. (4) implies the distribution of R depends on the proportion pα only through the

sum of proportions for those equivalent latent patterns, where “equivalence” is exactly in the

sense of the equality of ideal response vectors ξ:,α = ξ:,β. Therefore, as long as there do exist

equivalent patterns with ξ:,α = ξ:,β for some α 6= β, their separate proportion parameters

pα and pβ are always not identifiable, and at best identifiable up to their sum. This shows a

severe “nowhere identifiable” phenomenon for proportion parameters of equivalent attribute

patterns. Importantly, there exist equivalent attribute patterns under DINA if and only if

the Q-matrix satisfies the Completeness Condition (C). Therefore, if a Q-matrix does not

contain a submatrix IK , certain proportion parameters pα’s will always be unidentifiable

regardless of what values these pα’s take. This implies the failure of generic identifiability

according to Definition 2. The following example gives a concrete illustration of the above
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phenomenon and Proposition 1.

Example 1. Suppose the Q-matrix takes the form

Q =

1 0

1 1

 ,

then the ideal response vectors are the same for the two latent attribute patterns α = (00)

and α′ = (01) across all the items; namely ξ1,(00) = ξ1,(01) = 0 and ξ2,(00) = ξ2,(01) = 0,

then p00 and p01 can be at best identifiable up to their sum p00 + p01. This means the

individual proportion parameter p00 (or p01) is always not identifiable in a continuum within

the interval (0, p00 + p01), even if p00 + p01 is already identified and known. Therefore,

one should resort to the p-partial identifiability notion proposed and studied by Gu and Xu

(2020). Specifically, if Q violates Condition (C) just as in this example, Proposition 1

merely states it is impossible to have generic identifiability of all the individual parameters

in the DINA model. In such scenarios, it may still be desirable and meaningful to study the

identifiability of the item parameters (s, g) and the grouped proportion parameters (in this

case, the {p00 + p01, p10, p11}), i.e., p-partial identifiability.

Proposition 1 indeed implies Condition (C) is necessary for generic identifiability of DINA.

It is worth comparing this conclusion to the generic identifiability results in Gu and Xu (2020)

and Chen et al. (2020) developed for CDMs with main effects. In fact, for a CDM that models

the main effects of latent attributes (distinct from the conjunctive DINA, e.g., see Maris,

1999; von Davier, 2008; de la Torre, 2011), it is known that a Q-matrix does not need to

contain any identity submatrix IK for generic identifiability to hold. Specifically, for main-

effect-based CDMs, two K ×K submatrices each with all diagonal elements being “1” and

any off-diagonal element free to be either “1” or “0” plus some minor additional condition

would deliver generic identifiability (Gu and Xu, 2020; Chen et al., 2020). In contrast, this

is not the case for the DINA model as shown in Proposition 1 and Example 1.

Having understood Condition (C)’s role with respect to generic identifiability, we next
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continue to consider the Repeated-Measurement Condition (R). The following proposition

shows that a “severe” violation of Condition (R) would also cause a severe outcome, implying

the failure of generic identifiability.

Proposition 2 (Severe Violation of the Repeated-measurement Condition (R)). Under the

DINA model, suppose the Q-matrix satisfies Condition (C) and severely violates Condition

(R) in that some attribute is required by only one item (i.e.,
∑J

j=1 qj,k = 1 for some k ∈ [K]).

Then the item parameters (sj, gj) associated with this particular item and the proportion

parameters p are nowhere identifiable in their parameter space, so generic identifiability fails

to hold.

Remark 1. Note that the earlier Proposition 1 already established that the violation of

Condition (C) would lead to the failure of generic identifiability. Therefore, when consid-

ering Condition (R), to avoid Condition (C) from being the source of the failure of generic

identifiability, we assume Q satisfies Condition (C) in Proposition 2.

Proposition 2 implies the condition that each attribute being required by at least two

items (i.e.,
∑J

j=1 qj,k ≥ 2 for all k ∈ [K]) is necessary for generic identifiability of DINA.

The proof of Proposition 2 indicates that the non-identifiable outcome when
∑J

j=1 qj,k = 1

for some k ∈ [K] is similar in severity to the violation of Condition (C), in that even local

identifiability fails to hold. This means even in an arbitrarily small local neighborhood of

those parameters sj, gj, and pα’s, there exist alternative parameters s̄j, ḡj, and p̄α’s that are

indistinguishable from the true ones (i.e., giving rising to the same distribution of R). Under

such severe violations of the C-R-D conditions described in Propositions 1 and 2, estimation

and inference of those unidentifiable parameters would not be meaningful.

3.2 Sufficient Conditions for Generic Identifiability

When the severe violations of C-R-D conditions in Propositions 1 and 2 do not occur, we

next consider the setting where some latent attribute is required by only two items. We call

this setting a “slight” violation of Condition (R), to distinguish it from the “severe” violation
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scenario in Proposition 2. It turns out that generic identifiability can hold in such settings,

as shown in our next theorem. Let 1L denote a L-dimensional column vector whose entries

all equal to one.

Theorem 1 (Slight Violation of the Repeated-measurement Condition (R)). Consider the

DINA model where Q satisfies Condition (C). Suppose some attribute is required by only two

items (i.e.,
∑J

j=1 qj,k = 2 for some k ∈ [K]). So the Q-matrix can be written in the following

form after some column/row permutation, where Q∗ is a (J − 2) × (K − 1) submatrix and

u is a (K − 1)× 1 vector.

Q =


1 0

1 u

0 Q∗

 . (5)

If the submatrix Q∗ satisfies the C-R-D conditions and u 6= 1>K−1, then the DINA model

parameters (s, g,p) are generically identifiable.

Remark 2. When we say a J∗×K∗ submatrix Q∗ of Q satisfies the C-R-D conditions, the

Completeness Condition (C) refers to that Q∗ contains an identity submatrix IK∗ . In the

context of Theorem 1, K∗ = K − 1 and Q∗ satisfies the C-R-D conditions, which means Q∗

contains a submatrix IK−1. Generally, Condition (C) always requires a matrix to contain an

identity submatrix that has the same number of columns as itself.

Remark 3. Note that although we write the Q-matrix in Theorem 1 in a specific form

where the first two items require the first attribute A1, the identifiability conclusion indeed

addresses the general case where an arbitrary attribute Ak is required by two arbitrary items.

Given a general Q-matrix in such a form, one can always rearrange the rows and columns

in the Q-matrix and check the identifiability conditions in Theorem 1.

We leave the mathematical characterization and statistical interpretation of the measure-

zero non-identifiable set N to Section 4. Under the conditions in Theorem 1, the first at-

tribute A1 is only required by two items in Q, yet all the parameters, including all individual
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proportions pα’s, can be generically identifiable. Note that such a conclusion is substantially

different from the p-partial identifiability statements in Gu and Xu (2020), which states that

when Q does not contain an IK , certain pα’s are always not identifiable regardless of what

values the true parameters take.

Theorem 1 addresses the case where one attribute is required by exactly two items. More

generally, generic identifiability can hold even when multiple attributes are each required by

two items. Our next theorem characterizes this conclusion rigorously. For several vectors

a1, . . . ,aL each of the same dimension K, define
∨L
`=1 a` := (maxL`=1 a`,1, . . . ,maxL`=1 a`,K)

to be the elementwise maximum of these vectors.

Theorem 2. Consider the DINA model where Q satisfies Condition (C). Suppose after some

column and row permutation, the Q-matrix takes the following form for some m, where the

first m+ 1 latent attributes are each required by only two items.

Q =


1 0

1 u1

0 Q(1)

 , Q(1) =


1 0

1 u2

0 Q(2)

 , · · · , Q(m) =


1 0

1 um+1

0 Q(m+1)

 . (6)

For ` = 2, . . . ,m+ 1, define ũ(`) = (0,u(`)) to be a (K − 1)-dimensional vector, and denote

ũ(1) = u(1), also a (K − 1)-dimensional vector. Suppose
∨m+1
`=1 ũ(`) 6= 1>K−1. and the

(J −m− 2)× (K −m− 1) matrix Q(m+1) satisfies the C-R-D conditions. Then the DINA

model parameters (s, g,p) are generically identifiable.

Note that if all the u-vectors u1, . . . ,um+1 in (6) are zero vectors, then the requirement∨m+1
`=1 ũ(`) 6= 1>K−1 in Theorem 2 is satisfied and the first m attributes A1, . . . , Am are

each measured by only two items. So Theorem 2 implies that generic identifiability can be

achieved when Condition (R) is significantly weakened from requiring ≥ 3 items per attribute

to ≥ 2 items per attribute.

Among the C-R-D conditions, thus far we have examined Condition (C) and Condition

(R) regarding the requirements of generic identifiability. Next consider the Condition (D),
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which is a more complex combinatorial condition about the structure of a Q-matrix. When

Condition (D) is violated, after removing an identity submatrix IK , the remaining submatrix

of Q contains at least a pair of identical column vectors. The next theorem shows that the

DINA model can be generically identifiable in this scenario.

Theorem 3 (Violation of the Distinctness Condition (D)). Consider the DINA model with

a Q-matrix satisfying Conditions (C) and (R), but violating Condition (D). Without loss of

generality, suppose the Q-matrix can be written in the following form after some column/row

permutation,

Q =


1 0 0

0 1 0

v v Q∗

 ; without loss of generality, one can write
(
v v Q∗

)
=

0 0 Q′

1 1 Q′′

 .

(7)

If the submatrix Q′ satisfies the C-R-D conditions, and Q′′ contains some zero row vector,

then the DINA model parameters (s, g,p) are generically identifiable.

Remark 4. Note that if a Q-matrix takes the form in (7) and satisfies Condition (R) that∑J
j=1 qj,k ≥ 3 for each k ∈ [K], then the binary vector v contains at least two entries of

“1”s; i.e., the submatrix Q′′ has at least two rows. We would like to emphasize again that

although the Q-matrix in (7) takes a specific form where Condition (D) fails to hold for the

first two attributes and the first two items are single-attribute items, Theorem 3 generally

applies when Condition (D) fails for an arbitrary pair of attributes. Under the assumption

of Theorem 3, one can always rearrange the columns and rows of Q to make it take the form

of (7) and then check our identifiability conditions.

In summary, in this section we have shown that in violation of the Completeness Con-

dition (C) or in severe violation of the Repeated-measurement Condition (R) (i.g., some

attribute measured by only one item), certain parameters under DINA are always not iden-

tifiable and hence not generically identifiable. While a slight violation of Condition (R)

(some attribute measured by two items) or a violation of the Distinctness Condition (D)
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can still yield a generically identifiable model under certain conditions. These conclusions

delineate the different nature of the C-R-D conditions, the minimal conditions for strict iden-

tifiability, and hence characterize the fine borders between strict and generic identifiability.

Furthermore, the new generic identifiability conditions provide relaxed and more practical

requirements on the Q-matrix designs in practice.

4 Measure-zero Non-identifiable Sets and Blessing of

Latent Dependence

This section will characterize the forms of the measure-zero non-identifiable subsets N ’s

(N ⊆ T ) under generic identifiability, and reveal the blessing-of-latent-dependence phe-

nomenon. In general, it turns out that under the minimal conditions for generic identifiabil-

ity of DINA, these null sets N ’s carry certain statistical independence interpretation of the

latent attributes.

We fix some notation first. For a vector z = (z1, . . . , zK) and some integers 1 ≤ k < ` ≤

K, denote zk:` = (zk, zk+1, . . . , z`). For two random vectors (or variables) x and y, write

x ⊥⊥ y if they are statistically independent, and x 6⊥⊥ y otherwise. For a pattern α∗ ∈

{0, 1}K−1, let (1,α∗) and (0,α∗) denote two K-dimensional binary patterns. The following

theorem addresses the case of slight violation of the Repeated-measurement Condition (R).

Theorem 4. Consider the generically identifiable setting in Theorem 1, where Q takes the

following form, with the submatrix Q∗ satisfying the C-R-D conditions and u 6= 1>K−1.

Q =


1 0

1 u

0 Q∗

 .
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(a) The measure-zero set NR,1 ⊆ T where identifiability breaks down is characterized by

NR,1 = {(s, g,p) ∈ T : p satisfies p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 ∀α∗1, α∗2 � u.}

= {(s, g,p) ∈ T : p satisfies (A1 ⊥⊥ A2:K | A2:K � u).}, (8)

where “A1 ⊥⊥ A2:K | A2:K � u” reads: latent attributes A1 and A2:K are conditionally

independent given A2:K � u.

(b) In particular, parameters s3:J and g3:J are always identifiable; while the remaining

parameters s1:2, g1:2, and p are identifiable as long as p 6∈ NR,1.

Remark 5. When the form of a set N ⊆ T depends only on the proportion parameters p

but not on the item parameters (s, g), we will write (s, g,p) 6∈ N also simply as p 6∈ N with

a slight abuse of notation, just as in Theorem 4(b).

We will also call those non-identifiable measure-zero sets N ’s under generic identifiability

by null sets. Note that the null set NR,1 in (8) is characterized by the zero-set of certain

polynomials only involving the proportion parameters p = (pα : α ∈ {0, 1}K). By the basic

terminology in algebraic geometry, any simultaneous zero-set of several nonzero polynomials

about a vector of parameters (such as those about p underlying NR,1) defines an algebraic

variety (e.g., Allman et al., 2009). It is known that such an algebraic variety necessarily

has measure zero with respect to the Lebesgue measure on the parameter space. In the

proof of Theorem 4(a), we first establish that as long as the true proportions p satisfy

p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 for all α∗1 6= α∗2 with α∗1, α
∗
2 � u, then the DINA model

parameters are identifiable. Then based on such a defining characteristic of the null set

NR,1 of proportions, we further derive the interpretation of conditional independence “A1 ⊥

⊥ A2:K | A2:K � u” underlying NR,1 (see the proof of Theorem 4 for more details). In

fact, interestingly, one will soon see the above observation holds more generally in that the

null sets are often characterized by polynomial equations of the proportion parameters pα’s,

which carry the interpretation of latent independence.
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The next theorem generalizes the blessing-of-latent-dependence phenomenon to the case

where multiple attributes are each measured by only two items.

Theorem 5. Consider the generically identifiable setting of Theorem 2, where Q takes the

following form, with Q(m+1) satisfying the C-R-D conditions and
∨m+1
`=1 (0, u(`)) 6= 1>K−1.

Q =


1 0

1 u1

0 Q(1)

 , Q(1) =


1 0

1 u2

0 Q(2)

 , · · · , Q(m) =


1 0

1 um+1

0 Q(m+1)

 .

Define p
(`)
(z,α∗) = P(A`+1 = z, A(`+2):K = α∗) for ` = 0, . . . ,m, which characterizes the

joint distribution of latent attributes A`+1, . . . , AK. The measure-zero subset NR ⊆ T where

identifiability may break down can be written as

NR =
m⋃
`=0

N`, where N` =
{
p

(`)
(1,α∗1)p

(`)
(0,α∗2) − p

(`)
(0,α∗1)p

(`)
(1,α∗2) = 0 for any α∗1,α

∗
2 � w`

}
=
{
A` ⊥⊥ A(`+1):K

∣∣∣ A(`+1):K � w`
}
, ` = 0, 1, . . . ,m;

here the notation w` :=
∨m+1
t=`+1(0, u(t)) is also a K-dimensional binary vector.

Remark 6. If u = 0 is a zero vector in Theorem 1 and 4, then the conditional independence

statement “A1 ⊥⊥ A2:K | A2:K � u” in the definition of the null set NR,1 becomes “A1 ⊥⊥

A2:K”, i.e., the marginal independence between A1 and A2:K . This implies if some attribute

Ak is required by only two items and both these items solely require Ak, the DINA parameters

are identifiable if and only if Ak has any dependence on the remaining attributes. Similarly,

if each w` =
∨m+1
t=`+1(0, u(t)) = 0 is a zero vector in Theorem 2 and 5, then each set N`

characterizes the marginal independence A` ⊥⊥ A(`+1):K .

Theorem 4 implies when Condition (R) is slightly violated in that some latent attribute

Ak is required by only two items, then the model is identifiable as long as this attribute Ak

has some statistical dependence on the remaining attributes. Theorem 5 further establishes a
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similar conclusion when multiple attributes are each required by only two items. Intuitively,

we can understand this phenomenon in the following way. When some attribute is required

by only two items, instead of three items as required for strict identifiability, then such lack of

information in the Q-matrix part (i.e., in the measurement part) can be partly compensated

for if there exists dependence between this attribute and remaining ones in the latent part.

Therefore, Theorems 4 and 5 describes an interesting trade-off between the measurement part

and the latent part of the DINA model, and reveals a nontrivial phenomenon of blessing of

latent dependence on identifiability.

The next theorem characterizes the statistical implication of generic identifiability when

the Distinctness Condition (D) is violated.

Theorem 6. Consider the generically identifiable setting of Theorem 3, where Q takes the

following form, with Q′ satisfying the C-R-D conditions.

Q =



1 0 0

0 1 0

0 0 Q′

1 1 Q′′


.

(a) The measure-zero set ND = ND,1∪ND,2 ⊆ T where identifiability may break down can

be written as follows,

ND,1 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2, (9)

m2(α∗1,α
∗
2) ·m2(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.};

and ND,2 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2, (10)

m3(α∗1,α
∗
2) ·m3(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m3(β∗1,β

∗
2)−m3(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.};
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where


m1(α∗1,α

∗
2) := p(0,1,α∗1)p(1,0,α∗2) − p(0,1,α∗2)p(1,0,α∗1);

m2(α∗1,α
∗
2) := p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1);

m3(α∗1,α
∗
2) := p(0,0,α∗1)p(0,1,α∗2) − p(0,0,α∗2)p(0,1,α∗1).

(11)

Here each mi(·, ·) can be viewed as a function which takes two arbitrary binary patterns

in {0, 1}K−2 (α∗1, α∗2 or β∗1, β∗2) as input and outputs a value based on proportions p.

(b) In particular, all the item parameters except (g1, g2) and those proportion parameters

{p(1,1,α∗) : ∀α∗ ∈ {0, 1}K−2} are always identifiable. As for the remaining parameters,

the g1 and {p(1,0,α∗) : ∀α∗} are identifiable if p 6∈ ND,1; the g2 and {p(0,1,α∗) : ∀α∗}

are identifiable if p 6∈ ND,2; and {p(0,0,α∗) : ∀α∗} are identifiable if p 6∈ ND,1 ∪ND,2.

The following proposition provides a statistical understanding about the null sets ND,1

and ND,2 in Theorem 6 underlying generic identifiability.

Proposition 3. Consider the measure-zero non-identifiable sets ND,1, ND,2 ⊆ T defined in

(9)-(10) in Theorem 6. The following statements hold,

ND,1 ⊇ {p satisfies (A1 ⊥⊥ A3:K | A2 = 0)} ⊇ {p satisfies (A1 ⊥⊥ A3:K)}; (12)

ND,2 ⊇ {p satisfies (A2 ⊥⊥ A3:K | A1 = 0)} ⊇ {p satisfies (A2 ⊥⊥ A3:K)};

ND,1 ∩ND,2 ⊇ {p satisfies (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1))} ⊇ {p satisfies (A1:2 ⊥⊥ A3:K)}.

Namely, under the generic identifiability setting in Theorems 3 and 6, the measure-zero non-

identifiable subsets ND,1 and ND,2 cover (conditional) independence scenarios between the

first two latent attributes for which Condition (D) fails, and the remaining latent attributes.

Remark 7. It is instrumental to compare the results in Theorem 3 and Proposition 3 to a

toy example in Gu and Xu (2019). In particular, Example 2 in Gu and Xu (2019) constructed

a Q-matrix with K = 2 where Conditions (C) and (R) are both satisfied while Condition

(D) is violated, in order to illustrate the necessity of Condition (D) for strict identifiability.
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In fact, their Q-matrix can be viewed as just containing the first two columns of the Q-

matrix in our Theorem 6. Gu and Xu (2019) showed that some parameters under DINA are

always not identifiable under such a J × 2 matrix, which would imply the failure of generic

identifiability. In contrast, our Theorem 3 and Proposition 3 indicate that, if there are more

than two attributes (K > 2) where there exists some statistical dependence between those

two attributes for which Condition (D) fails and the remaining K−2 attributes, then generic

identifiability can actually be easily restored. The new results thus deliver a highly nontrivial

and reassuring insight into generic identifiability of the DINA model.

Our new results in Theorem 3 and Proposition 3 delineate the nature of Condition (D)

as a “could-be-violated” condition for generic identifiability. Thus the violation of Condition

(D) is somewhat similar in severity to the aforementioned slight violation of Condition (R).

It is worth pointing out that the blessing of dependence happens regardless of the sign of

the dependence. That is, as long as latent dependence exists (i.e., between A1 and A2:K in

Theorem 4, or between A1:2 and A3:K in Theorem 6), no matter whether it is positive or

negative dependence, it will help restore identifiability anyway based on our technical proofs.

We would like to point out that the identifiability results in this work are of a very fine-

grained nature obtained using quite nontrivial proof arguments. This can be seen from the

explicit algebraic forms of the null sets and the nuanced identifiability conclusions about

specific parameters in Theorems 4 and 6, for example. Importantly, such results cannot be

obtained by invoking the Kruskal’s Theorem (Kruskal, 1977) on the uniqueness of tensor

decompositions, which is a popular and powerful tool for establishing identifiability of latent

structure models (e.g., in Allman et al., 2009; Fang et al., 2019; Culpepper, 2019; Chen et al.,

2020). In fact, identifiability conclusions obtained by invoking Kruskal’s Theorem are usually

of a rather “global” nature, where certain global rank conditions of the probability tensor

delivers identifiability. In contrast, our proof focuses on marginal moments of the response

vector, and investigate under which conditions any specific parameter (such as g1, g2 in

Theorem 6) becomes identifiable from the polynomial equations given by the moments. Such

a detailed analysis enables us to derive the explicit forms of those null sets N ’s under generic
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identifiability, and to obtain the statistical implication of the blessing of latent dependence.

5 Discussion

Although sharp conditions (the C-R-D conditions) previously exist for the strict identifiabil-

ity of the DINA model, it was not clear how important each of them means to identifiability,

and how one can relax them to obtain more practical generic identifiability conditions. In

this work, we first delineated the fundamentally different nature of the C-R-D conditions,

clarifying that certain violation (i.e., violation of Condition (C) and severe violation of Con-

dition (R)) will cause some parameters to be always unidentifiable, and hence not generically

identifiable. Then, we further proposed nontrivial relaxations of the C-R-D conditions that

ensure generic identifiability. All of our new conditions only depend on the structure of the

Q-matrix and are easily checkable. Furthermore, under generic identifiability, we explic-

itly characterized the measure-zero subset of the parameter space where identifiability may

break down, and reveal that these sets carry the interpretation of latent independence. In

a nutshell, in slight violation of Condition (R) and Condition (D), as long as those latent

attributes for which the conditions fail depend on the remaining latent attributes, identifi-

ability can be restored. Therefore, the statistical dependence between latent attributes can

help restore identifiability under some otherwise unidentifiable Q-matrix designs.

One motivation for exploring as weak as possible identifiability conditions is that such

results have useful implications on statistical estimation. For example, the Bayesian formu-

lation and estimation of CDMs have recently gained a great surge of interest. A body of

works including Culpepper (2015), Chen et al. (2018), Liu et al. (2020), Chen et al. (2021),

Balamuta and Culpepper (2022) directly and cleverly incorporate identifiability constraints

into designing Markov Chain Monte Carlo (MCMC) sampling algorithms. In addition, Kern

and Culpepper (2020) used a special-case generic identifiability conclusion of DINA estab-

lished in Gu and Xu (2021) to estimate a restricted four-parameter IRT model. Therefore,

obtaining as weak as possible identifiability conditions for popular CDMs, such as DINA,
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may provide an impetus to design more efficient MCMC algorithms under less stringent

conditions. Moreover, in educational assessment settings where the DINA model is believed

to explain data well, obtaining more practical identifiability conditions can better inform the

design of cognitive diagnostic tests.

Finally, the blessing of latent dependence intuitively reveals a trade-off between the mea-

surement part and the latent part of the DINA model. The measurement part is characterized

by the Q-matrix, as Q = (qj,k) specifies how the observed Rj’s depend on the latent Ak’s.

And the latent part is characterized by the proportion parameters p, as p = (pα) encodes

whether and how the latent attributes depend on each other. In violation of some of the

C-R-D conditions on the Q-matrix, there is a lack of information in the measurement part

for identifiability to hold. In this case, the blessing of latent dependence reveals that, such

lack of measurement information can be partly compensated for by the dependence informa-

tion in the latent part, if any. This discovery not only is theoretically highly nontrivial, but

also provides reassurance for applying the DINA model in practice. Indeed, in educational

cognitive diagnosis, the multiple latent attributes are usually fine-grained skills falling within

one ability domain, so they are highly likely to be dependent rather than independent of

each other. In this regard, our theoretical results show that such latent dependence can be

a blessing, rather than a concern.

Supplementary Material

The Supplementary Material contains the technical proofs of all the theoretical results.
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Supplementary Material

Before presenting the proofs of the identifiability results, we introduce a useful technical

tool, the T -matrix of marginal response probabilities. This technical tool was proposed by

Xu and Zhang (2016) and also used in Gu and Xu (2019) to study the identifiability of the

DINA model. First, consider a general notation Θ = (θj,α)J×2K collecting all of the item

parameters under the DINA model. The J × 2K matrix Θ has rows indexed by the J items

and rows by all of the |{0, 1}K | = 2K configurations of the binary latent attribute pattern,

where the (j,α)th entry θj,α = P(Rj = 1 | A = α) denotes the probability of a positive

response to the jth item given the latent attribute pattern α. Then under the conjunctive

assumption of DINA, we can write θj,α as

θj,α =


1− sj, if ξj,α =

∏K
k=1 α

qj,k
k = 1;

gj, otherwise.

Note that given a Q-matrix, there is a one-to-one mapping between the matrix Θ and the

item parameters (s, g). We next define a 2J × 2K matrix T (Θ) based on Θ. The rows of

T (Θ) are indexed by the 2J different response patterns r = (r1, . . . , rJ)> ∈ {0, 1}J , and

columns by attribute patterns α ∈ {0, 1}K , while the (r,α)th entry of T (Θ), denoted by

Tr,α(Θ), represents the marginal probability that subjects with latent pattern α provide

positive responses to the set of items {j : rj = 1}, namely

Tr,α(Θ) = P(R � r | Θ,α) =
J∏
j=1

θ
rj
j,α.

We denote the αth column vector and the rth row vector of the T -matrix by T:,α(Θ) and

Tr,:(Θ), respectively. The rth element of the 2J -dimensional vector T (Θ)p is

Tr,:(Θ)p =
∑

α∈{0,1}K
Tr,α(Θ)pα = P(R � r | Θ,p).
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Based on the T -matrix, there is an equivalent definition of identifiability of (Θ,p) (equiv-

alently, identifiability of (s, g,p)). Further, the T -matrix has a nice property that will

facilitate proving the identifiability results. We summarize them in the following lemma,

whose proof can be found in Xu (2017).

Lemma 1. Consider the DINA model defined in (1).

(a) The parameters (s, g,p) are identifiable if and only if there does not exist (s̄, ḡ, p̄) 6=

(s, g,p) such that

T (Θ)p = T (Θ̄)p̄.

(b) For any vector θ∗ = (θ∗1, . . . , θ
∗
J)> ∈ RJ , there exists an 2J×2J invertible matrix D(θ∗)

which depends only on θ∗ such that

T (Θ− θ∗ · 1>2K ) = D(θ∗) · T (Θ).

Lemma 1 (a) and (b) imply that for any vector θ∗ = (θ∗1, . . . , θ
∗
J)>, there holds

T (Θ− θ∗ · 1>2K )p = D(θ∗)T (Θ)p = D(θ∗)T (Θ̄)p̄ = T (Θ̄− θ∗ · 1>2K )p̄ (S.1)

The above equality will be frequently used throughout the proof of our identifiability results.

In the following proofs, we sometimes will denote c := 1J − s = (1 − s1, . . . , 1 − sJ)> for

notational convenience. Using this notation, the DINA model parameters can be equivalently

expressed as (c, g,p).
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S.1 Proof of Proposition 1

We rewrite Eq. (4) in the main text below,

P(R = r | s, g,p) =
∑

α∈{0,1}K
pα · P(R = r | A = α, s, g)

=
∑

α∈{0,1}K
pα · P(R = r | ξ:,A = ξ:,α, s, g)

=
∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα

)
P(R = r | ξ:,A = ξ:,α, s, g),

where the notation R ⊆ {0, 1}K denotes a collection of representative latent attribute pat-

terns, such that {ξ:,α : α ∈ R} contains mutually distinct ideal response vectors and also

covers all the possible ideal response vectors under the Q-matrix. Because of (4), for any

α ∈ R, those patterns β ∈ {0, 1}K with ξ:,β = ξ:,α can be considered to be equivalent to α

under the DINA model with the considered Q-matrix. For α ∈ R, define the equivalence

class of latent attribute patterns by

[α] := {β ∈ {0, 1}K : ξ:,β = ξ:,α}.

We next show that if for some α ∈ {0, 1}K , the set [α] contains multiple elements, say α

and α′ ∈ [α] with α 6= α′, then their corresponding proportion parameters pα and pα′ will

always be unidentifiable, no matter what values pα and pα′ take. Specifically, if two sets of

parameters (s, g,p) and (s̄, ḡ, p̄) satisfy that P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all

r ∈ {0, 1}J under a same Q-matrix, then (4) gives

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα

)
P(R = r | ξ:,A = ξ:,α, s, g) =

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

p̄α

)
P(R = r | ξ:,A = ξ:,α, s̄, ḡ);
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and even if (s, g) = (s̄, ḡ), the identifiability equations P(R | s, g,p) = P(R | s̄, ḡ, p̄) only

give the following,

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα −
∑

β∈{0,1}K :
ξ:,β=ξ:,α

p̄α

)
P(R = r | ξ:,A = ξ:,α, s, g) = 0, ∀r ∈ {0, 1}J .

From the above equations, one can not identify individual parameters pβ for those β belong-

ing to a same equivalence class [α]. Next we will show that if Q violates the Completeness

Condition (C), then some equivalence class [α] will contain multiple elements, leading to the

aforementioned non-identifiability consequence.

According to Gu and Xu (2020), the set of representative patterns R in (4) can be

obtained using the row vectors of the Q-matrix as follows,

R =

{∨
j∈S

qj : S ⊆ {1, . . . , J} is an arbitrary subset of item indices

}
, (S.2)

where
∨
j∈S qj =: α denotes the elementwise maximum of the set of vectors {qj : j ∈ S}

and the kth entry of the resultant vector α is αk = maxj∈S{qj,k}. So
∨
j∈S qj is also a

K-dimensional binary vector and hence R � {0, 1}K . In fact, R = {0, 1}K if and only if Q

contains a submatrix IK after some row permutation. To see this, consider if the row vectors

of Q do not include a certain standard basis vector ek (which has a “1” in the kth entry and

“0” otherwise), then ek does not belong to R defined in (S.2) because ek cannot be written

in the form of
∨
j∈S qj for any subset S ⊆ [J ]. Therefore, if Q violates the Completeness

Condition (C), then R is a proper subset of {0, 1}K , which implies certain attribute patterns

become equivalent under such a Q-matrix. In summary, if a Q-matrix does not contain a

submatrix IK , certain proportion parameters pα’s will always be unidentifiable regardless of

the values of these pα’s. This implies the failure of generic identifiability of the DINA model

parameters (s, g,p) according to Definition 2 and proves Proposition 1.
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S.2 Proof of Proposition 2

The construction for non-identifiable parameters in this setting is the same as that in the

proof of Theorem 1 in Xu and Zhang (2016). We next elaborate on this construction to

make clear the failure of generic identifiability. Since Q satisfies Condition (C), we can write

the form of Q as follows without loss of generality,

Q =

1 0>

0 Q?

 ,

where the first attribute A1 is required by only one item, the first item. Next construct

two different sets of DINA model parameters (s, g,p) and (s̄, ḡ, p̄) which lead to the same

distribution of R. In particular, if setting sj = s̄j and gj = ḡj for all j ≥ 2, then the

identifiability equations P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all r ∈ {0, 1}J will

exactly reduce to the following set of equations,

∀α∗ ∈ {0, 1}K−1,


p(0,α∗) + p(1,α∗) = p̄(0,α∗) + p̄(1,α∗);

g1p(0,α∗) + (1− s1)p(1,α∗) = ḡ1p̄(0,α∗) + (1− s̄1)p̄(1,α∗).

The above system of equations involve |{ḡ1, s̄1}∪{p̄α; α ∈ {0, 1}K}| = 2K + 2 free unknown

variables regarding (s̄, ḡ, p̄), while there are only 2K equations, so there exist infinitely many

different solutions to (s̄, ḡ, p̄). In particular, we can let ḡ1 = g1 and arbitrarily set s̄1 in

a small neighborhood of s1 with s̄1 6= s1. Then correspondingly solve for the proportion

parameters p̄ as

∀α∗ ∈ {0, 1}K−1, p̄(1,α∗) =
1− s1

1− s̄1

p(1,α∗), p̄(0,α∗) = p(0,α∗) +

(
1− 1− s1

1− s̄1

)
p(1,α∗).

Since s̄1 can vary arbitrarily in the neighborhood of s1 without changing the distribution of

R, we have shown that the parameter s1 is always unidentifiable in the parameter space.

The parameter g1 can be similarly shown to be always unidentifiable. The fact that item
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parameters (s1, g1) are always unidentifiable whatever their values are indicates the failure

of generic identifiability. This proves the conclusion of Proposition 2.

S.3 Proof of Theorem 1 and Theorem 4

Proof of Theorem 1. Below we rewrite the form of the Q-matrix stated in the theorem,

Q =


1 0

1 u

0 Q?

 .

By Lemma 1, if parameters (Θ,p) and (Θ̄, p̄) give rise to the same distribution of the

observed responses, then the following equality holds,

Tr,:(Θ)p = Tr,:(Θ̄)p̄ for all r ∈ {0, 1}J , (S.3)

Note that the last J − 2 rows of Q has the first column being an all-zero column, and has

the other K − 1 columns forming a sub-matrix Q? which satisfies the C-R-D conditions.

Since the C-R-D conditions are sufficient for identifiability of DINA model parameters by

Gu and Xu (2019), the last J − 2 rows of the Q-matrix implies a nice identifiability result

for a subset of the model parameters (c, g,p). We next elaborate on this observation.

For notational convenience, denote by P(·) the probability under the true parameters

(c, g,p), and denote by P(·) the probability under the alternative parameters (c̄, ḡ, p̄). For

a α∗ ∈ {0, 1}K−1, let (0,α∗), (1,α∗) ∈ {0, 1}K denote two K-dimensional binary vectors.

Since Q1, 3:J is an all-zero vector, it is always true that θj, (1,α∗) = θj, (0,α∗) for j ≥ 3 and

α∗ ∈ {0, 1}K−1. Therefore, for any response pattern r = (r1, r2, r
∗) ∈ {0, 1}J , Eq. (S.3) for

r implies the following,

∑
(z,α∗)∈{0,1}K

∏
j>2: rj=1

θj, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A1 = z, A2:K = α∗)
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∑
α∗∈{0,1}K−1

∏
j>2: rj=1

θj, (0,α∗) · [P(R1 ≥ r1, R2 ≥ r2, A1 = 1, A2:K = α∗)

+ P(R1 ≥ r1, R2 ≥ r2, A1 = 0, A2:K = α∗)]

=
∑

α∗∈{0,1}K−1

∏
j>2: rj=1

θ̄j, (0,α∗) · [P(R1 ≥ r1, R2 ≥ r2, A1 = 1, A2:K = α∗)

+ P(R1 ≥ r1, R2 ≥ r2, A1 = 0, A2:K = α∗)];

which can be further simplified to be

∑
α∗∈{0,1}K−1

∏
j>2: rj=1

θj, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗)

=
∑

α∗∈{0,1}K−1

∏
j>2: rj=1

θ̄j, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗).

(S.4)

Note that fixing an arbitrary (r1, r2) and varying r∗ ∈ {0, 1}J−1, the above systems of

equations (S.4) can be viewed as surrogate identifiability equations T (Θ∗)p∗ = T (Θ̄
∗
)p̄∗ for

the last J−2 items in the test, where those θj,(0,α∗) =: θ∗j,α∗ serve as surrogate item parameters

Θ∗ = {θ∗j,α∗ : j = 3, . . . , J ; α∗ ∈ {0, 1}K−1}; and those P(R1 ≥ r1, R2 ≥ r2, A2:K =

α∗) =: p∗α∗ serve as surrogate proportion parameters p∗ = {p∗α∗ : α∗ ∈ {0, 1}K−1}. An

important observation is that the parameters (Θ∗,p∗) can be viewed as associated with the

matrix Q? under a DINA model with J − 2 items and K − 1 latent attributes. Now that

Q? satisfies the C-R-D conditions (which are sufficient for identifiability), we obtain the

following “identifiability conclusions” for the parameters (Θ∗,p∗),


θj,(0,α∗) = θ̄j,(0,α∗);

P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗) = P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗);

(S.5)

which hold for any j ∈ {3, . . . , J} and α∗ ∈ {0, 1}K−1. Recall that for any item j ≥ 3, the

parameter θj,(0,α∗) ranges over both item parameters cj and gj) when α∗ ranges in {0, 1}K−1,
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so the first part of (S.5) implies

cj = c̄j, gj = ḡj, ∀j ∈ {3, . . . , J}. (S.6)

Recall the form of Q and the vector u stated in the theorem, for any α∗ ∈ {0, 1}K−1 and

α∗ � u (i.e. vector α is elementwisely greater than or equal to vector u), the second part

of (S.5) implies the following must hold,

(r1, r2) =



(0, 0) =⇒ p(0,α∗) + p(1,α∗) = p̄(0,α∗) + p̄(1,α∗);

(1, 0) =⇒ g1 · p(0,α∗) + c1 · p(1,α∗) = ḡ1 · p̄(0,α∗) + c̄1 · p̄(1,α∗);

(0, 1) =⇒ g2 · p(0,α∗) + c2 · p(1,α∗) = ḡ2 · p̄(0,α∗) + c̄2 · p̄(1,α∗);

(1, 1) =⇒ g1g2 · p(0,α∗) + c1c2 · p(1,α∗) = ḡ1ḡ2 · p̄(0,α∗) + c̄1c̄2 · p̄(1,α∗).

(S.7)

First, we transform the system of equations (S.7) to obtain


(g1 − c1) · (g2 − c̄2) · p(0,α∗) = (ḡ1 − c1) · (ḡ2 − c̄2) · p̄(0,α∗);

(g2 − c̄2) · p(0,α∗) + (c2 − c̄2) · p(1,α∗) = (ḡ2 − c̄2) · p̄(0,α∗).

Note that the right hand sides of both the above equations are nonzero. So we can take the

ratio of the two equations to obtain

f1(α∗) :=
(g1 − c1) · (g2 − c̄2)

(g2 − c̄2) + (c2 − c̄2) · p(1,α∗)/p(0,α∗)
= ḡ1 − c1.

So for two arbitrary patterns α∗1, α∗2 ∈ {0, 1}K−1 with α∗1,α
∗
2 � u, our above deduction

gives f1(α∗1) = f1(α∗2) = ḡ1 − c1. This equality of f1(α∗1) and f1(α∗2) implies

(c2 − c̄2) ·
p(1,α∗1)

p(0,α∗1)

= (c2 − c̄2) ·
p(1,α∗2)

p(0,α∗2)

;

=⇒ (c2 − c̄2) ·
(
p(1,α∗1)

p(0,α∗1)

−
p(1,α∗2)

p(0,α∗2)

)
= 0. (S.8)
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The above equation indicates that as long as there exist one pair of patterns α∗1, α∗2 ∈

{0, 1}K−1 with α∗1,α
∗
2 � u and α∗1 6= α∗2 such that

p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) 6= 0, (S.9)

then p(1,α∗1)/p(0,α∗1) 6= p(1,α∗2)/p(0,α∗2) and we must have c2 = c̄2 from (S.8). Under the assump-

tion stated in Theorem 1 that u 6= 1K−1, there indeed exist such two distinct vectors α∗1, α∗2

satisfying α∗1,α
∗
2 � u. Therefore, c2 = c̄2 (i.e., c2 is identifiable) as long as p 6∈ NR,1, where

the set NR,1 is defined in the statement of Theorem 4:

NR,1 = {p satisfies p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1, α
∗
2 � u}.

Next, we transform the system of equations (S.7) in another way to obtain


(c1 − g1) · (c2 − ḡ2) · p(1,α∗) = (c̄1 − g1) · (c̄2 − ḡ2) · p̄(1,α∗);

(g2 − ḡ2) · p(0,α∗) + (c2 − ḡ2) · p(1,α∗) = (c̄2 − ḡ2) · p̄(1,α∗).

The ratio of the above two equations gives

f2(α∗) :=
(c1 − g1) · (c2 − ḡ2)

(g2 − ḡ2) · p(0,α∗)/p(1,α∗) + (c2 − ḡ2)
= c̄1 − g1.

Again we have f2(α∗1) = f2(α∗2) for any α∗1,α
∗
2 � u with α∗1 6= α∗2. Such an equality implies

(g2 − ḡ2) ·
p(0,α∗1)

p(1,α∗1)

= (g2 − ḡ2) ·
p(0,α∗2)

p(1,α∗2)

, =⇒ (g2 − ḡ2) ·
(
p(0,α∗1)

p(1,α∗1)

−
p(0,α∗2)

p(1,α∗2)

)
= 0.

Therefore, as long as p 6∈ NR,1, we also have g2 = ḡ2 and g2 is identifiable.

Now note that the systems of equations (S.7) are symmetric about (c1, g1) and (c2, g2).

Since we have already obtained c2 = c̄2 and g2 = ḡ2 if p 6∈ NR,1, we also have c1 = c̄1 and

g1 = ḡ1 if p 6∈ NR,1 following the same argument. Thus far we have already established c = c̄

and g = ḡ, i.e., have shown the identifiability of all the item parameters in Θ.
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Since the item parameters (c, g) (equivalently, Θ) are already identified, and we have

T (Θ)p = T (Θ̄)p̄ = T (Θ)p̄. Since Q contains a submatrix IK , the matrix T (Θ) has full

column rank from a statement in Xu and Zhang (2016), and hence we obtain p = p̄. This

means all the parameters (s, g,p) are identifiable as long as p satisfies (S.9). More precisely,

we have that the DINA model parameters are identifiable if (s, g,p) ∈ T \ NR,1 where the

set NR,1 is defined by (8) in the main text in Theorem 4. We rewrite the definition of NR,1,

The above set NR,1 has measure zero with respect to the Lebesgue measure defined on the

parameter space T . This is because NR,1 is characterized by the zero set of a polynomial

equation about entries of p, and by basic algebraic geometry, NR,1 necessarily has measure

zero in the parameter space of p. This completes the proof of Theorem 1.

Proof of Theorem 4. We next examine the statistical interpretation of the null set NR,1

defined in (8) where identifiability breaks down. Recall the definition of the population

proportion parameter pα = P(A = α), where A = (A1, . . . , AK) denotes a random attribute

profile. For an arbitrary attribute pattern α = (α1,α
∗) where the subvector satisfies α∗ ∈

{0, 1}K−1 and α∗ � u, we have

P(A1 = α1)P(A2:K = α∗)

=
( ∑
β∈{0,1}K−1

p(α1,β)

)
(p(α1,α∗) + p(1−α1,α∗))

=
∑

β∈{0,1}K−1

p(α1,β)p(α1,α∗) +
∑

β∈{0,1}K−1

p(α1,β)p(1−α1,α∗)

=
∑

β∈{0,1}K−1

p(α1,β)p(α1,α∗) +
∑

β∈{0,1}K−1

p(1−α1,β)p(α1,α∗) (because p ∈ NR,1)

=
( ∑
β∈{0,1}K−1

p(α1,β) +
∑

β∈{0,1}K−1

p(1−α1,β)

)
p(α1,α∗)

= p(α1,α∗) = P(A = α).

The third equality above follows from the fact that for p ∈ NR,1, the p(α1,β)p(1−α1,α∗) =

p(1−α1,β)p(α1,α∗) holds for any α1 ∈ {0, 1} and α∗,β ∈ {0, 1}K−1. Now we obtain that if
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p ∈ NR,1, then P(A = (α1,α
∗)) = P(A1 = α1)P(A2:K = α∗) for any α1 ∈ {0, 1} and

α∗ � u. This implies if p ∈ NR,1, then latent attribute A1 is conditionally independent of

latent attributes A2:K given A2:K � u.

On the other hand, if latent variables A1 and A2:K are conditionally independent given

A2:K � u, then for any α∗ � u we have

p(1,α∗)

p(0,α∗)
=
P(A = (1,α∗))

P(A = (0,α∗))
=
P(A1 = 1)P(A2:K = α∗)

P(A1 = 0)P(A2:K = α∗)
=
P(A1 = 1)

P(A1 = 0)
=: ρ.

This means for any α∗1 6= α∗2 with α∗1,α
∗
2 � u, the equality p(1,α∗1)/p(0,α∗1) − p(1,α∗2)/p(0,α∗2) =

ρ− ρ = 0 must hold, which is equivalent to p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 for any α∗1 6= α∗2

with α∗1,α
∗
2 � u. This means if A1 ⊥⊥ A2:K | A2:K � u holds, then we must have p ∈ NR,1

with NR,1 defined in (8) in Theorem 4.

Now we have proved the statement that

A1 ⊥⊥ A2:K | A2:K � u,

is exactly equivalent to the statement that

p ∈ NR,1 = {p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 holds for any α∗1 6= α∗2 with α∗1,α
∗
2 � u}.

This completes the proof of Theorem 4.

S.4 Proof of Theorem 2 and Theorem 5

Proof of Theorem 2. We rewrite the form of Q in (6) below,

Q =


1 0

1 u1

0 Q(1)

 , Q(1) =


1 0

1 u2

0 Q(2)

 , · · · , Q(m) =


1 0

1 um+1

0 Q(m+1)

 .
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Under the assumption that the first m + 1 latent attributes are each required by only two

items, we know u1, 1:m = 0, u2, 1:(m−1) = 0, . . ., um, 1 = 0. First consider the last J −m− 2

items corresponding to the bottom (J −m− 2)×K submatrix of Q,

(0, Q(m+1)) =: Q̃(m+1)

The (J − m − 2) × (K − m − 1) matrix Q(m+1) satisfies the C-R-D conditions under the

assumption stated in the corollary, and that the first m+1 columns of the Q̃(m+1) are all-zero

columns. Next we use an argument similar to the proof of Theorem 1. Consider a true set of

parameters (Θ,p) and an alternative set (Θ̄, p̄) with T (Θ)p = T (Θ̄)p̄. Then the following

equations must hold for an arbitrary fixed response pattern r = (r1, . . . , rm+2, r
∗),

∑
α∗∈{0,1}K−m−2

∏
j>m+2: rj=1

θj, (0,α∗) · P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗)

=
∑

α∗∈{0,1}K−m−2

∏
j>m+2: rj=1

θ̄j, (0,α∗) · P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗).

Similar to the argument in the proof of Theorem 1, the fact that Q(m) satisfies the C-R-D

conditions imply c(J−m−1):J = c̄(J−m−1):J and g(J−m−1):J = ḡ(J−m−1):J , and also imply the

following for all α∗ ∈ {0, 1}K−m−2,

P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗) = P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗). (S.10)

Define surrogate (grouped) proportion parameters to be

p
(m)
(z,α∗) = P(Am+1 = z, A(m+2):K = α∗), z = 0, 1; (S.11)

and define p̄
(m)
(z,α∗) similarly based on the alternative set of parameters (Θ̄, p̄). Now fixing

(r1, . . . , rm)> = 0 and varying (rm+1, rm+2) ∈ {0, 1}2, the equality in (S.10) becomes

P((Rm+1, Rm+2) ≥ (rm+1, rm+2), A(m+2):K = α∗)
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= P((Rm+1, Rm+2) ≥ (rm+1, rm+2), A(m+2):K = α∗).

This implies the following equations for any fixed α∗ � u(m+1) when (rm+1, rm+2) vary,

(rm+1, rm+2) =



(0, 0) =⇒ p
(m)
(0,α∗) + p

(m)
(1,α∗) = p̄

(m)
(0,α∗) + p̄

(m)
(1,α∗);

(1, 0) =⇒ gm+1 · p(m)
(0,α∗) + cm+1 · p(m)

(1,α∗) = ḡm+1 · p̄(0,α∗) + c̄m+1 · p̄(m)
(1,α∗);

(0, 1) =⇒ gm+2 · p(m)
(0,α∗) + cm+2 · p(m)

(1,α∗) = ḡm+2 · p̄(m)
(0,α∗) + c̄m+2 · p̄(m)

(1,α∗);

(1, 1) =⇒ gm+1gm+2 · p(m)
(0,α∗) + cm+1cm+2 · p(m)

(1,α∗)

= ḡm+1ḡm+2 · p̄(m)
(0,α∗) + c̄m+1c̄m+2 · p̄(m)

(1,α∗).

(S.12)

The above system of four equations are similar in form to Eq. (S.7) in the proof of Theorem

1. So following a similar argument as before, we obtain that (cm+1, cm+2) and (gm+1, gm+2)

and all the p
(m)
(z,α∗)’s are identifiable as long as p ∈ T \ Nm where

Nm = {p(m)
(1,α∗1)p

(m)
(0,α∗2) − p

(m)
(0,α∗1)p

(m)
(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1,α

∗
2 � u(m+1)}. (S.13)

Note the definition (S.11) implies that each surrogate proportion p
(m)
(z,α∗) is a sum of certain

individual proportion parameters in that

p
(m)
(z,α∗) =

∑
β∈{0,1}m

p(β,z,α∗).

Note that the p
(m)
(z,α∗) defined above exactly characterizes the joint distribution of latent

attributes Am and A(m+1):K . Now we have that the set Nm defined in (S.13) corresponds to

the zero set of certain polynomials about the proportion parameters p, so Nm has Lebesgue

measure zero in the parameter space T . Therefore we have shown (cm+1, cm+2), (gm+1, gm+2),

and p(m) := (p
(m)
(z,α∗); (z,α∗) ∈ {0, 1}K−m) are generically identifiable.
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Moreover, we go back to the equality in (S.10) and define surrogate proportions alterna-

tively as

p
(m),r
(z,α∗) = P(R1:m � r1:m, Am+1 = z, A(m+2):K = α∗), x = 0, 1;

and define p̄
(m),r
(z,α∗) similarly. Fixing r1:m and varying (rm+1, rm+2) ∈ {0, 1}2, Eq. (S.10) can

be written in a similar form as the four equations in (S.12), with p
(m)
(z,α∗) there replaced by

p
(m),r
(z,α∗) now. Since when p ∈ T \Nm, we already have the item parameters (cm+1, cm+2) and

(gm+1, gm+2) are identifiable, based on the equations about (cm+1, cm+2), (gm+1, gm+2), and

p(m),r, the parameters p(m),r are also identifiable. Now we write out the equality p(m),r =

p̄(m),r by their definitions as

P(R1:m ≥ r1:m, Am+1 = z, A(m+2):K = α∗) = P(R1:m ≥ r1:m, Am+1 = z, A(m+2):K = α∗),

where (z,α∗) ∈ {0, 1}K−m. Therefore the above equation can be equivalently written as

follows, with the new α∗ defined to be (K −m)-dimensional,

P(R1:m ≥ r1:m, A(m+1):K = α∗) = P(R1:m ≥ r1:m, A(m+1):K = α∗). (S.14)

Comparing the above (S.14) to the previous (S.10) give an immediate similarity, with the

difference being only the changes of subscripts of R and A. Therefore, we can proceed in

the same way as before, and show the identifiability of (cm−1, cm) and (gm−1, gm) and all the

p
(m−1)
(z,α∗) when p satisfies p ∈ T \ (Nm ∪Nm−1), where

Nm−1 = {p(m−1)
(1,α∗1)p

(m−1)
(0,α∗2) − p

(m−1)
(0,α∗1)p

(m−1)
(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1,α

∗
2 � u(m) ∨ (0,u(m+1))}.

In the definition of Nm−1, we have α∗1,α
∗
2 � u(m) ∨ (0,u(m+1)) = ũ(m) ∨ ũ(m+1) because the

α∗1,α
∗
2 first need to satisfy the previous requirement before (S.12) and hence α∗1,−1,α

∗
2,−1 �

u(m+1) (equivalently, α∗1,α
∗
2 � (0,u(m+1))); and additionally they also need to satisfy the
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new requirement α∗1,α
∗
2 � u(m).

Recall the definition that ũ(`) = (0,u(`)) is a (K−1)-dimensional vector for ` = 2, . . . ,m+

1, and ũ(1) = u(1) is also a (K−1)-dimensional vector. Proceeding in an iterative manner as

done in the previous paragraphs, we obtain that as long as p satisfies the following condition,

then all the item parameters c, g and all the proportion parameters p are identifiable.

p ∈ T \

{
m⋃
`=0

N`

}
,

N` =
{
p

(`)
(1,α∗1)p

(`)
(0,α∗2) − p

(`)
(0,α∗1)p

(`)
(1,α∗2) = 0 for any α∗1,α

∗
2 �

m+1∨
t=`+1

ũ(t)
}

;

with the definition p
(`)
(z,α∗) = P(A`+1 = z, A(`+2):K = α∗),

Because of the assumption
m+1∨
t=1

ũ(t) 6= 1>K−1 (S.15)

stated in the theorem, we claim that the set T \ {
⋃m
`=0N`} is nonempty. To see this, note

that
∨m+1
t=`+1 ũ

(t) 6= 1>K−1 for each ` = 0, . . . ,m follows from (S.15). This means there must

exist two distinct patterns α∗1,` 6= α∗2,` with α∗1,`, α
∗
2,` �

∨m+1
t=`+1 ũ

(t). Therefore as long as p

satisfies p
(`)
(1,α∗1,`)

p
(`)
(0,α∗2,`)

− p(`)
(0,α∗1,`)

p
(`)
(1,α∗2,`)

6= 0 for each ` = 0, . . . ,m, such p does not belong to⋃m
`=0N` and hence p ∈ T \ {

⋃m
`=0N`}. This proves the earlier claim that the subset of the

identifiable parameters T \ {
⋃m
`=0N`} is nonempty.

Now note that the subset of the parameter space where identifiability may break down⋃m
`=0N` is a finite union of several zero sets of polynomial equations about entries of p,

so it necessarily has Lebesgue measure zero in T . This proves the generic identifiability of

parameters (c, g,p) and completes the proof of Theorem 2. Furthermore, note that the N`

in the last paragraph gives the form of the non-identifiable null sets in Theorem 5. Recall

that the notation p
(`)
(z,α∗) exactly corresponds to the marginal distribution of the K− ` latent
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attributes A`+1, . . . , AK . So each set N` can be equivalently written as

N` =
{
A` ⊥⊥ A(`+1):K

∣∣∣ {A(`+1):K �
m+1∨
t=`+1

ũ(t)
}}

.

The above set N` carries the statistical interpretation of latent conditional independence.

This completes the proof Theorem 5.

S.5 Proof of Theorem 3 and Theorem 6

We rewrite the form of the Q-matrix in the theorem below,

Q =


1 0 0

0 1 0

v v Q?

 =



1 0 0

0 1 0

0 0 Q′

1 1 Q′′


.

Denote the size of the above submatrix Q′ by J1× (K − 2), then Q′′ has size (J − 2− J1)×

(K−2). By Remark 4, we have J−2−J1 ≥ 2. Consider two sets of DINA model parameters

(c, g,p) and (c̄, ḡ, p̄) that lead to the same distribution of R so we have T (Θ)p = T (Θ̄)p̄.

Theorem 4 in Xu and Zhang (2016) established that if Q satisfies Conditions (C) and (R),

then the guessing parameters associated with those items requiring more than one attribute

(i.e., {gj :
∑K

k=1 qj,k > 1}) and all the slipping parameters (i.e., {c1, . . . , cJ}) are identifiable.

Since the considered Q-matrix satisfies Conditions (C) and (R) by the assumption in the

theorem, we have c = c̄ and g(3+J1):J = ḡ(3+J1):J .

Next consider an arbitrary α∗ ∈ {0, 1}K−2. The form of the Q-matrix implies

θj, (0,0,α∗) = θj, (0,1,α∗) = θj, (1,0,α∗) = θj, (1,1,α∗), ∀j ∈ {2, . . . , 2 + J1}.
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So for a response pattern r with r(3+J1):J = 0, we can write Tr,:(Θ)p as follows,

Tr,:(Θ)p

=
∑

α∈{0,1}K
α=(α1,α2,α

∗)

pα · P(R1 ≥ r1, R2 ≥ r2 | A = α)

2+J1∏
j=3

θj, (0,0,α∗)

=
∑

α∗∈{0,1}K−2

 ∑
(α1,α2)∈{0,1}2

p(α1,α2,α∗) · P(R1 ≥ r1, R2 ≥ r2 | A1:2 = (α1, α2))


︸ ︷︷ ︸

define this to be p
(r1,r2)

α∗

2+J1∏
j=3

θj, (0,0,α∗).

Now define surrogate DINA model parameters: surrogate proportions p(r1,r2) = (p
(r1,r2)
α∗ :

α∗ ∈ {0, 1}K−2) and surrogate item parameters Θ∗ = {θj, (0,0,α∗) : j = 3, . . . , 2 + J1; α∗ ∈

{0, 1}K−2}. These surrogate parameters p(r1,r2) and Θ∗ can be viewed as associated with the

J1× (K−2) matrix Q′. Since Q′ satisfies the C-R-D conditions, we obtain the identifiability

of p(r1,r2) and Θ∗. Note that Θ∗ includes all the item parameters associated with items with

indices 3, . . . , J ; i.e., we have established the identifiability of {c3, . . . , c2+J1 , g3, . . . , g2+J1}.

So far we have obtained c = c̄ and g3:J = ḡ3:J . It only remains to identify p and (g1, g2).

The identifiability of p(r1,r2) means p(r1,r2) = p̄(r1,r2) for (r1, r2) ∈ {0, 1}2, which gives

(r1, r2) =



(0, 0) : p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) + p(1,1,α∗)

= p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗) + p̄(1,1,α∗);

(1, 0) : g1[p(0,0,α∗) + p(0,1,α∗)] + c1[p(1,0,α∗) + p(1,1,α∗)]

= ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + c1[p̄(1,0,α∗) + p̄(1,1,α∗)];

(0, 1) : g2[p(0,0,α∗) + p(1,0,α∗)] + c2[p(0,1,α∗) + p(1,1,α∗)]

= ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + c2[p̄(0,1,α∗) + p̄(1,1,α∗)];

(1, 1) : g1g2p(0,0,α∗) + c1g2p(1,0,α∗) + g1c2p(0,1,α∗) + c1c2p(1,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + c1ḡ2p̄(1,0,α∗) + ḡ1c2p̄(0,1,α∗) + c1c2p̄(1,1,α∗).

(S.16)
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Since Q′ satisfies Condition (C) and contains a submatrix IK−2, we can assume without

loss of generality that the first K − 2 rows of Q′ form IK−2; namely, the first K rows of Q

forms an identity matrix IK . According to the form of Q, let qm = (1, 1, 0, . . . , 0) for some

m ∈ {3 + J1, . . . , J}. Given an arbitrary pattern α∗ = (α3, . . . , αK) ∈ {0, 1}K−2, define

θ∗ =
∑

3≤k≤K:
αk=1

gkek +
∑

3≤k≤K:
αk=0

ckek + gmem.

Then Tr,:(Θ− θ∗ · 12K )p = Tr,:(Θ̄− θ∗ · 12K )p̄ gives

p(1,1,α∗)

∏
3≤k≤K:
αk=1

(ck − gk)
∏

3≤k≤K:
αk=0

(gk − ck)(cm − gm)

= p̄(1,1,α∗)

∏
3≤k≤K:
αk=1

(ck − gk)
∏

3≤k≤K:
αk=0

(gk − ck)(cm − gm),

which implies p(1,1,α∗) = p̄(1,1,α∗). Note that this identifiability conclusion holds for any

α∗ ∈ {0, 1}K . Plugging the p(1,1,α∗) = p̄(1,1,α∗) into (S.16) gives the following equations

about undetermined parameters ḡ1, ḡ2, and {p(0,0,α∗), p(0,1,α∗), p(1,0,α∗) : α∗ ∈ {0, 1}K−2},

(r1, r2) =



(0, 0) =⇒ p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗);

(1, 0) =⇒ g1[p(0,0,α∗) + p(0,1,α∗)] + c1p(1,0,α∗) = ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + c1p̄(1,0,α∗);

(0, 1) =⇒ g2[p(0,0,α∗) + p(1,0,α∗)] + c2p(0,1,α∗) = ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + c2p̄(0,1,α∗);

(1, 1) =⇒ g1g2p(0,0,α∗) + c1g2p(1,0,α∗) + g1c2p(0,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + c1ḡ2p̄(1,0,α∗) + ḡ1c2p̄(0,1,α∗).

(S.17)
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After some transformation, (S.17) yields


(g1 − ḡ1)(p(0,0,α∗) + p(0,1,α∗)) + (c1 − ḡ1)p(1,0,α∗) = (c1 − ḡ1)p̄(1,0,α∗),

(g1 − ḡ1)(g2 − c2)p(0,0,α∗) + (c1 − ḡ1)(g2 − c2)p(1,0,α∗) = (c1 − ḡ1)(ḡ2 − c2)p̄(1,0,α∗).

(S.18)

The right hand sides of both of the above equations are nonzero. So we can take the ratio

of these two equations to obtain

(g1 − ḡ1)p(0,0,α∗)/p(1,0,α∗) + (c1 − ḡ1)

(g1 − ḡ1)[p(0,0,α∗) + p(0,1,α∗)]/p(1,0,α∗) + (c1 − ḡ1)
(g2 − c2) = ḡ2 − c2.

Define f(α∗) = p(0,0,α∗)/p(1,0,α∗), g(α∗) = [p(0,0,α∗) + p(0,1,α∗)]/p(1,0,α∗) as functions of α∗,

then the above equation can be written as

A · f(α∗) +B

A · g(α∗) +B
= C,

where A = g1 − ḡ1, B = c1 − ḡ1, and C = ḡ2 − c2. So we have

A · (f(α∗)− C · g(α∗)) = BC −B,

which is equivalent to

(g1 − ḡ1) ·
[
p(0,0,α∗)

p(1,0,α∗)
− (ḡ2 − c2)

p(0,0,α∗) + p(0,1,α∗)

p(1,0,α∗)

]
= (c1 − ḡ1)(ḡ2 − c2)− (c1 − ḡ1).

Consider α∗1,α
∗
2, we further obtain the following function h(α∗) does not depend on α∗,

h(α∗) := (g1 − ḡ1) ·
[
p(0,0,α∗)

p(1,0,α∗)
− (ḡ2 − c2)

p(0,0,α∗) + p(0,1,α∗)

p(1,0,α∗)

]

= (g1 − ḡ1) ·
p(0,0,α∗) + (c2 − ḡ2)(p(0,0,α∗) + p(0,1,α∗))

p(1,0,α∗)
;
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therefore we have

0 = h(α∗1)− h(α∗2)

= (g1 − ḡ1) ·
[p(0,0,α∗1) + (c2 − ḡ2)(p(0,0,α∗1) + p(0,1,α∗1))

p(1,0,α∗1)

−
p(0,0,α∗2) + (c2 − ḡ2)(p(0,0,α∗2) + p(0,1,α∗2))

p(1,0,α∗2)

]
= (g1 − ḡ1)

1

p(1,0,α∗1)p(1,0,α∗2)

{
[p(0,0,α∗1) + (c2 − ḡ2)(p(0,0,α∗1) + p(0,1,α∗1))]p(1,0,α∗2)

− [p(0,0,α∗2) + (c2 − ḡ2)(p(0,0,α∗2) + p(0,1,α∗2))]p(1,0,α∗1)

}
.

According to the above equality, if g1 − ḡ1 6= 0, then h(α∗1)− h(α∗2) = 0 gives

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1) (S.19)

+(c2 − ḡ2)[(p(0,0,α∗1) + p(0,1,α∗1))p(1,0,α∗2) − (p(0,0,α∗2) + p(0,1,α∗2))p(1,0,α∗1)] = 0.

We rewrite below the definitions of the functions m1,m2,m3 stated in (11) in the theorem,


m1(α∗1,α

∗
2) = p(0,1,α∗1)p(1,0,α∗2) − p(0,1,α∗2)p(1,0,α∗1),

m2(α∗1,α
∗
2) = p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1),

m3(α∗1,α
∗
2) = p(0,0,α∗1)p(0,1,α∗2) − p(0,0,α∗2)p(0,1,α∗1).

Then (S.19) can be written as

m2(α∗1,α
∗
2) + (c2 − ḡ2)[m2(α∗1,α

∗
2) +m1(α∗1,α

∗
2)] = 0. (S.20)

Note that c2 − ḡ2 6= 0. If m2(α∗1,α
∗
2) 6= 0 holds for some α∗1 and α∗2, then we can obtain the

following from (S.20),

m1(α∗1,α
∗
2)

m2(α∗1,α
∗
2)

:=
p(0,1,α∗1)p(1,0,α∗2) − p(0,1,α∗2)p(1,0,α∗1)

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1)

=
1

ḡ2 − c2

− 1. (S.21)
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Therefore, as long as there exist α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2 such that p satisfies

m1(α∗1,α
∗
2)

m2(α∗1,α
∗
2)
6= m1(β∗1,β

∗
2)

m2(β∗1,β
∗
2)
, m2(α∗1,α

∗
2) 6= 0, m2(β∗1,β

∗
2) 6= 0,

then (S.21) cannot hold true; such a contradiction implies the earlier assumption g1− ḡ1 6= 0

is incorrect, and we should have g1 = ḡ1. Equivalently, we have shown that if there exist

α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2 such that

m1(α∗1,α
∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2) 6= 0, m2(α∗1,α

∗
2) 6= 0, m2(β∗1,β

∗
2) 6= 0,

then g1 = ḡ1 and hence parameter g1 is identifiable.

Define a subset ND,1 of the parameter space T to be

ND,1 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

Either m1(α∗1,α
∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2) = 0,

Or m2(α∗1,α
∗
2) = 0, Or m2(β∗1,β

∗
2) = 0.}

= {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

m2(α∗1,α
∗
2) ·m2(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.}.

Then we have established that as long as p ∈ T \ ND,1, then g1 = ḡ1 and parameter g1 is

identifiable. By the symmetry between g1 and g2, we similarly obtain that if p ∈ T \ ND,2,

then g2 = ḡ2 and parameter g2 is identifiable, where ND,2 takes the following form,

ND,2 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

m3(α∗1,α
∗
2) ·m3(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m3(β∗1,β

∗
2)−m3(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.}.

The function m3(·, ·) has been defined earlier together with m1(·, ·) and m2(·, ·). In summary,

if p ∈ T \ (ND,1 ∪ND,2), then g1 and g2 are identifiable.
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Recall that we previously have already proved the identifiability of all the other item

parameters and also identifiability of {p(1,1,α∗) : α∗ ∈ {0, 1}K−2}. Now we can replace ḡ1

by g1 in the first equation in (S.18) and obtain p̄(1,0,α∗) = p(1,0,α∗); similarly, replacing ḡ2

by g2 in (S.17) gives p̄(0,1,α∗) = p(0,1,α∗). With p̄(1,0,α∗) and p̄(0,1,α∗) both determined, (S.17)

finally gives p̄(1,1,α∗) = p(1,1,α∗). Noting that the above argument holds for an arbitrary α∗ ∈

{0, 1}K−2, we have established the identifiability of all the parameters under the DINA model

under the condition that the true proportion parameters p satisfies p ∈ T \ (ND,1 ∪ ND,2).

Note that the set ND,1 ∪ND,2 where identifiability potentially breaks down is characterized

by the zero sets of certain nontrivial polynomial equations about the entries of p, and hence

necessarily has Lebesgue measure zero in the parameter space T . This proves the conclusion

of generic identifiability and concludes the proof of Theorem 3. Further note that the forms

of ND,1 and ND,2 defined in the last paragraph are exactly the same as those stated in

Theorem 6, so we have also proved Theorem 6.

S.6 Proof of Proposition 3

We introduce some new notation to facilitate understanding the null sets ND,1 and ND,2.

Consider the joint distribution of two discrete random variables Z1 := (A1, A2) and Z2 :=

(A3, . . . , AK), each concatenated from the latent attributes. That is, Z1 concatenates two

variables A1 and A2 and takes |{0, 1}2| = 4 possible values, and Z2 concatenates K − 2

binary variables and takes |{0, 1}K−2| = 2K−2 possible values. The joint distribution of Z1

and Z2 can be written in the form of a 4× 2K−2 contingency table, whose rows are indexed

by the possible values Z1 can take and columns by the possible values Z2 can take. Each

entry in this table represents the probability of a specific configuration of (Z1, Z2). We write
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out this 4× 2K−2 table below and denote it by B,

(10 · · · 0) (01 · · · 0) · · · (11 · · · 1)


(00) p(00,10···0) p(00,01···0) · · · p(00,11···1)

(10) p(10,10···0) p(10,01···0) · · · p(10,11···1)

(01) p(01,10···0) p(01,01···0) · · · p(01,11···1)

(11) p(11,10···0) p(11,01···0) · · · p(11,11···1)

(S.22)

Note that when the previously used notation α∗ ∈ {0, 1}K−2 can indicate the configurations

of Z2, so the above matrix B have columns indexed by α∗ ∈ {0, 1}K−2. The definition of

mi(α
∗
1,α

∗
2), i = 1, 2, 3 can be understood as certain 2× 2 minor of the matrix B. Denote the

determinant of a matrix C by |C|. In particular, we have the following equalities,

m1(α∗1,α
∗
2) = p(0,1,α∗1)p(1,0,α∗2) − p(1,0,α∗1)p(0,1,α∗2) =

∣∣∣∣∣∣ p(0,1,α∗1) p(0,1,α∗2)

p(1,0,α∗1) p(1,0,α∗2)

∣∣∣∣∣∣ = |B({2, 3}, {α∗1,α∗2})|,

m2(α∗1,α
∗
2) = p(0,0,α∗1)p(1,0,α∗2) − p(1,0,α∗1)p(0,0,α∗2) =

∣∣∣∣∣∣ p(0,0,α∗1) p(0,0,α∗2)

p(1,0,α∗1) p(1,0,α∗2)

∣∣∣∣∣∣ = |B({1, 2}, {α∗1,α∗2})|,

m3(α∗1,α
∗
2) = p(0,0,α∗1)p(0,1,α∗2) − p(0,1,α∗1)p(0,0,α∗2) =

∣∣∣∣∣∣ p(0,0,α∗1) p(0,0,α∗2)

p(0,1,α∗1) p(0,1,α∗2)

∣∣∣∣∣∣ = |B({1, 3}, {α∗1,α∗2})|.

In the above display, the B({1, 2}, {α∗1,α∗2}) denotes the 2 × 2 submatrix of B containing

the entries in rows with indices 1, 2 and columns α∗1, α∗2.

We can use the technical machinery in the last paragraph to discover some meaningful

subsets of the non-identifiable null set ND,1 ∪ND,2. First, define

N1,sub = {m2(α∗1,α
∗
2) = 0 for all α∗1,α

∗
2 ∈ {0, 1}K−2}, (S.23)

N2,sub = {m3(α∗1,α
∗
2) = 0 for all α∗1,α

∗
2 ∈ {0, 1}K−2}. (S.24)

According to the definition of ND,1 and ND,2, it is clear that the two sets defined above
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satisfy N1,sub ⊆ ND,1 and N2,sub ⊆ ND,2. First consider the statistical implication of N1,sub.

Since m2(α∗1,α
∗
2) = |B({1, 2}, {α∗1,α∗2})|, when α∗1,α

∗
2 range over all the possible patterns

in {0, 1}K−2, the m2(α∗1,α
∗
2) will take on values of all the possible 2 × 2 minors of the

2× 2(K−2) matrix B({1, 2}, :) (i.e., the submatrix of B consisting of its first two rows). The

assertion in N1,sub that all these determinants equal zero essentially implies the submatrix

B({1, 2}, :) has rank one, i.e., has the two rows proportional to each other. This means for

all α∗ ∈ {0, 1}K−2, the ratio p(1,0,α∗)/p(0,0,α∗) is a constant δ, which further implies the ratio

p(1,0,α∗)/(p(0,0,α∗) + p(1,0,α∗)) is also a constant equal to 1/(1 + 1/δ), which we denote by ρ:

ρ =
p(1,0,α∗)

p(0,0,α∗) + p(1,0,α∗)
=
P(A1 = 1, A2 = 0,A3:K = α∗)

P(A2 = 0,A3:K = α∗)

=
P(A1 = 1,A3:K = α∗ | A2 = 0)

P(A3:K = α∗ | A2 = 0)
, ∀α∗ ∈ {0, 1}K−2.

So we have the following

P(A1 = 1,A3:K = α∗ | A2 = 0) = ρ · P(A3:K = α∗ | A2 = 0). (S.25)

Now summing over the above equation for all α∗ ∈ {0, 1}K−2, we obtain

∑
α∗∈{0,1}K−2

P(A1 = 1,A3:K = α∗ | A2 = 0) = ρ ·
∑

α∗∈{0,1}K−2

P(A3:K = α∗ | A2 = 0),

=⇒ P(A1 = 1 | A2 = 0) = ρ.

Plugging back ρ = P(A1 = 1 | A2 = 0) into (S.25) gives the following for all α∗ ∈ {0, 1}K−2,

P(A1 = 1,A3:K = α∗ | A2 = 0) = P(A1 = 1 | A2 = 0) · P(A3:K = α∗ | A2 = 0);

in a very similar fashion we can also obtain P(A1 = 0,A3:K = α∗ | A2 = 0) = P(A1 =

0 | A2 = 0) · P(A3:K = α∗ | A2 = 0) for all α∗ ∈ {0, 1}K−2. This essentially means

attribute A1 and attributes A3:K are conditionally independent given A2 = 0. So we have
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obtained that p ∈ N1,sub implies A1 and A3:K are conditionally independent given A2 = 0.

By symmetry, we similarly have that p ∈ N2,sub implies A2 and A3:K are conditionally

independent given A1 = 0. In summary, we have proved that N1,sub and N2,sub defined in

(S.23)-(S.24) correspond to the following conditional independence statements,

N1,sub = {p satisfies (A1 ⊥⊥ A3:K | A2 = 0)} ⊆ ND,1;

N2,sub = {p satisfies (A2 ⊥⊥ A3:K | A1 = 0)} ⊆ ND,2.

Additionally, by the basic property of marginal independence and conditional independence,

if p satisfies the marginal independence statement such as “A1 ⊥⊥ A3:K”, then it necessarily

also satisfies the conditional independence statement “A1 ⊥⊥ A3:K | A2 = 0”. Therefore we

have we also have

N1,sub = {p satisfies (A1 ⊥⊥ A3:K | A2 = 0)} ⊇ {p satisfies (A1 ⊥⊥ A3:K)};

N2,sub = {p satisfies (A2 ⊥⊥ A3:K | A1 = 0)} ⊇ {p satisfies (A2 ⊥⊥ A3:K)}.

Combining the two conclusions above, we have proved the first two conclusions in (12) in

Proposition 3.

Next we prove the third conclusion in (12) in Proposition 3. Define

Nboth = {m2(α∗1,α
∗
2) = m3(α∗1,α

∗
2) = 0 holds for all α∗1,α

∗
2 ∈ {0, 1}K−2.} (S.26)

First note that Nboth ⊆ ND,1 ∪ ND,2 obviously holds according to definition of ND,1 and

ND,2. We next examine the statistical implication the set Nboth. If p ∈ Nboth, then we have

the following for all α∗1,α
∗
2 ∈ {0, 1}K−2,

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1) = p(0,0,α∗1)p(0,1,α∗2) − p(0,0,α∗2)p(0,1,α∗1) = 0;

=⇒
p(1,0,α∗1)

p(0,0,α∗1)

=
p(1,0,α∗2)

p(0,0,α∗2)

,
p(0,1,α∗1)

p(0,0,α∗1)

=
p(0,1,α∗2)

p(0,0,α∗2)

, ∀α∗1,α∗2 ∈ {0, 1}K−2.
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This implies there exist some constants ρ1, ρ2 such that

p(1,0,α∗)

p(0,0,α∗)
= ρ1,

p(0,1,α∗)

p(0,0,α∗)
= ρ2, ∀α∗ ∈ {0, 1}K−2. (S.27)

Then for arbitrary (x, y) ∈ {(0, 0), (0, 1), (1, 0)} and α∗ ∈ {0, 1}K−2, we will have

P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗)

=
P(A1:2 = (x, y), A3:K = α∗)

P(A1:2 6= (1, 1), A3:K = α∗)

=
p(x,y,α∗)

p(0,0,α∗) + p(0,1,α∗) + p(1,0,α∗)
=

p(x,y,α∗)
p(0,1,α∗)

1 +
p(0,1,α∗)
p(0,1,α∗)

+
p(1,0,α∗)
p(0,1,α∗)

(S.28)

=



1

1 + ρ1 + ρ2

, if (x, y) = (0, 0);

ρ1

1 + ρ1 + ρ2

, if (x, y) = (1, 0);

ρ2

1 + ρ1 + ρ2

, if (x, y) = (0, 1).

The above deduction implies that the conditional distribution P(A1:2 = (x, y) | A1:2 6=

(1, 1), A3:K = α∗) does not depend on A3:K and hence can be indeed written as

P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗) = P(A1:2 = (x, y) | A1:2 6= (1, 1)).

Statistically, the above observation means the conditional independence (A1:2 ⊥⊥ A3:K |

A1:2 6= (1, 1)) holds. Also, note that in order for P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗)

in (S.28) to not depend on α∗, we must have (S.27) holds for some constants ρ1, ρ2. In

summary, we have shown that p ∈ Nboth if and only if (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1)) holds.

Namely, the Nboth defined in (S.26) can be equivalently written as

Nboth = {p satisfies (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1))}.
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Finally, recall that we have Nboth ⊆ ND,1 ∪ND,2, so

ND,1 ∪ND,2 ⊇ {p satisfies (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1))} ⊇ {p satisfies (A1:2 ⊥⊥ A3:K)}.

This completes the proof of Proposition 3.
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