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Abstract

Deep generative modeling is a powerful framework in modern machine learning,
renowned for its ability to use latent representations to predict and generate complex
high-dimensional data. Its advantages have also been recognized in psychometrics.
In this paper, we substantially extend the Deep Cognitive Diagnostic Models (Deep-
CDMs) in Gu (Psychometrika, 89:118–150, 2024) to challenging exploratory scenarios
with deeper structures and all Q-matrices unknown. The exploratory DeepCDMs can
be viewed as an adaptation of deep generative models (DGMs) toward diagnostic pur-
poses. Compared to classic DGMs, exploratory DeepCDMs enjoy critical advantages
including identifiability, interpretability, parsimony, and sparsity, which are all neces-
sary for diagnostic modeling. We propose a novel layer-wise expectation-maximization
(EM) algorithm for parameter estimation, incorporating layer-wise nonlinear spectral
initialization and L1 penalty terms to promote sparsity. From a parameter estimation
standpoint, this algorithm reduces sensitivity to initial values and mitigates estima-
tion bias that commonly affects classical approaches for deep latent variable models.
Meanwhile, from an algorithmic perspective, our method presents an original layer-
wise EM framework, inspired by modular training in DGMs but uniquely designed for
the structural and interpretability demands of diagnostic modeling. Extensive simula-
tion studies and real data applications illustrate the effectiveness and efficiency of the
proposed method.

Keywords: Exploratory Cognitive Diagnosis; Deep Generative Modeling; Deep Cognitive
Diagnostic Models (DeepCDMs); Identifiability; Layer-wise EM Algorithm.

1 Introduction

Over the past two decades, Cognitive Diagnosis Models (CDMs) have become increasingly

prominent in educational and psychological measurement (e.g., Junker and Sijtsma, 2001;

von Davier, 2008; Henson et al., 2009; Rupp et al., 2010; de la Torre, 2011; Chen et al., 2015;

von Davier and Lee, 2019). CDMs are a class of psychometric models that use item response
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data to infer examinees’ mastery status on multiple discrete latent attributes, such as skills,

subskills, or diagnostic criteria. In most applications, each attribute is assumed to be binary,

representing the presence or absence of a specific cognitive ability or psychological trait. By

estimating an individual’s profile across these attributes, CDMs facilitate detailed diagnos-

tic reporting. This information enables practitioners and educators to identify students’

strengths and weaknesses at a granular level, supporting the design of targeted interventions

and more individualized feedback.

Recently, interest in adopting higher-order structures for CDMs has grown, aiming to

capture interdependencies between the latent attributes (de la Torre and Douglas, 2004;

Templin et al., 2008; de la Torre and Song, 2009). Most existing models adopt a single

layer of higher-order continuous latent traits to explain correlations among lower-level latent

attributes (e.g., de la Torre and Douglas 2004; Templin et al. 2008; Bradshaw and Templin

2014; Ma 2022; Liu et al. 2025). Although these single-layer higher-order models offer an

interpretable and simplified representation of attribute dependencies, they may be limited in

modeling deeper latent hierarchies or providing more granular cognitive diagnoses. To model

deeper level cognitive processes, the recent Deep Cognitive Diagnostic Models (DeepCDMs)

proposed by Gu (2024) employ a deep architecture to capture probabilistic relationships

across multiple discrete latent layers. DeepCDMs flexibly let each of these layers deliver di-

agnostic information at a distinct level of granularity. Despite this added depth, DeepCDMs

remain parsimonious through compact parameterization and are mathematically identifiable

under intuitive conditions.

In this paper, we show that the advantages of DeepCDMs can be further leveraged by

generalizing them to an exploratory setting, where the attribute relationships between ad-

jacent layers (i.e., all the Q-matrices) are unknown. The exploratory DeepCDMs can be

viewed as an adaptation of deep generative models (DGMs) for psychometrics and edu-

cational measurement, with additional constraints imposed to serve diagnostic purposes.

DeepCDMs share structural similarities with several existing DGMs, such as deep belief net-

works (DBNs; Hinton et al. 2006); see Section 2.3 for further discussion. This connection

highlights the expressive power of DeepCDMs from the perspective of DGMs. In particu-

lar, DeepCDM’s layered architecture defines a hierarchical generative process, suitable for
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modeling students’ hierarchical and heterogeneous cognitive processes behind data. This

structure enables DeepCDMs to approximate highly complex response distributions while

maintaining a tractable form for layer-wise learning.

Although usual DGMs (Hinton et al., 2006; Salakhutdinov and Hinton, 2009) excel at

predictive and generative performance, their architectures and estimation algorithms are of-

ten heuristically designed and lack rigorous statistical foundations. Importantly, whether the

parameters underlying the latent representations are uniquely identifiable is largely unknown

for DGMs. This gap motivates us to introduce exploratory DeepCDMs, which are built for

diagnostic purposes and are fully identifiable. Exploratory DeepCDMs are identifiable under

transparent conditions on the between-layer Q-matrices (Gu, 2024). Identifiability ensures

that no two distinct parameter sets yield the same marginal distribution of the observed

responses, thereby guaranteeing consistent parameter estimation. As a consequence, Deep-

CDMs can provide statistically reliable personalized diagnoses of hierarchical latent abili-

ties. The identifiability conditions naturally imply an interpretable shrinking-ladder-shaped

sparse deep architecture, enabling the model to capture the latent skills from fine-grained

(shallower and closer to the response data layer) to coarse-grained (deeper and more higher-

order). Statistically, such architectures also induce parsimonious parameterizations, crucial

for reflecting test design constraints in real-world educational assessments.

Parameter estimation is a challenging issue for exploratory DeepCDMs, as the parameters

and Q-matrices across all layers are need to be estimated. The commonly used estimation

methods for related hierarchical models are Markov chain Monte Carlo (MCMC; Robert

and Casella, 2004) method and EM algorithm (Dempster et al., 1977). Gu (2024) employed

MCMC for confirmatory DeepCDMs with known Q-matrices. For exploratory DeepCDMs,

MCMC can, in principle, be developed by incorporating additional sampling steps for the

Q-matrix entries. However, when the Q-matrices are unknown and the latent structure in-

volves more than two layers—as in the settings considered in this work—significant practical

challenges such as initialization sensitivity, slower convergence, MCMC mixing difficulties,

and increased computational cost may limit its scalability and efficiency. The classical EM,

as explained later in Section 3.4, though faster, suffers from (a) extreme sensitivity to ini-

tialization—since all parameters must be initialized simultaneously in a highly nonconvex,
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multi-layer parameter space; and (b) cyclic bias accumulation, where errors in one layer’s

estimation propagate through both the E- and M-steps into other layers over successive iter-

ations. On the other hand, although many algorithms have been proposed for general DGMs

in machine learning (e.g., Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Ranganath

et al., 2015; Le Roux and Bengio, 2008; Salakhutdinov and Hinton, 2009), they are not di-

rectly applicable to DeepCDMs, as their typically overparameterized architectures do not

satisfy the parsimony and identifiability requirements of diagnostic modeling and are not

designed to promote sparsity or interpretability.

In this work, we propose a novel layer-wise EM algorithm for regularized maximum like-

lihood estimation with a layerwise L1 penalty in exploratory DeepCDMs. The algorithm

estimates parameters and Q-matrices sequentially, starting from the bottom layer, where a

one-layer EM algorithm is used to estimate both the coefficient and proportion parameters.

These proportion parameters are then used to generate pseudo-samples of latent attributes,

which serve as input for the next layer. We will continue this process one layer after another

until all layers are estimated. This strategy is not only intuitive but also grounded in the

model’s generative structure: marginalizing out deeper layers naturally yields a standard

one-layer CDM at the bottom, justifying the use of a one-layer EM for its estimation. In

higher layers, each step builds on the most informative signals from the previous one—either

as estimated distributions or generated pseudo-observations—thus respecting the model’s

hierarchical nature. Interestingly, the identifiability proof shows that identifiability can be

examined and established in a layer-by-layer manner, thanks to the formulation of the di-

rected graphical model and the discrete nature of the latent attributes. This theoretical

insight also supports the design of our proposed algorithm and provides a solid foundation

for treating imputed attributes as if observed in each step. Additionally, our layerwise es-

timation strategy conceptually aligns with the modular training principles widely used in

deep generative modeling, where complex models are progressively trained through simpler,

localized components. A more detailed discussion on this is in Section 3.5.2.

Initialization plays a crucial role in EM-based estimation, particularly in exploratory

settings where the Q-matrices are unknown and must be estimated. In such cases, the pa-

rameter space becomes more complex, and a well-informed initialization can greatly enhance

4



convergence stability and estimation quality. To this end, we adopt a fast, non-iterative pro-

cedure based on universal singular value thresholding (USVT), which yields reliable starting

values with theoretical guarantees under certain conditions (Chatterjee, 2015; Zhang et al.,

2020). The initialization is conducted in a sequential, layer-by-layer manner. For each layer,

the input matrix is first denoised via truncated SVD, then linearized by applying the inverse

link function, and then a second SVD followed by Varimax rotation is applied to recover a

sparse coefficient matrix, promoting sparsity and identifiability. We adopt a penalized esti-

mation framework where all Q-matrices are treated as unknown and estimated from data.

At each layer, Q-matrix estimation is framed as a latent variable selection problem, with

an L1 penalty imposed on the coefficient parameters to encourage sparsity. The M-step of

each layer’s EM update is solved via cyclical coordinate descent (Friedman et al., 2010; Tay

et al., 2023), efficiently maximizing the penalized log-likelihood. Additionally, as discussed in

Section 3.6, although the algorithm is developed under an exploratory framework, it can be

readily adapted for confirmatory applications. Our extensive simulation studies demonstrate

the good performance of the proposed layer-wise EM in challenging scenarios involving three

latent layers. Finally, we illustrate the practical utility of exploratory DeepCDM using data

from the 2019 Trends in International Mathematics and Science Study (TIMSS) assessment.

The remainder of this paper is organized as follows. Section 2 introduces the exploratory

DeepCDMs framework, discusses its formulation as a deep generative model, and addresses

the identifiability issues. Section 3 presents an efficient layer-wise algorithm for parameter

estimation for exploratory DeepCDMs. Section 4 presents simulation studies to evaluate

the performance of the proposed layer-wise EM algorithm for exploratory DeepCDMs under

various measurement models. Section 5 applies the proposed method to empirical data from

the TIMSS 2019 assessment. Finally, Section 6 gives concluding remarks.

2 Exploratory DeepCDMs Framework

In this section, we present the exploratory DeepCDM framework. We will build on the

concepts of confirmatory DeepCDMs in Gu (2024) and provide additional details for the

exploratory setting. We then discuss how exploratory DeepCDMs adapt DGMs for psycho-
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metrics, highlighting their architectural similarities and the additional structural constraints

for facilitating diagnostic feedback. Finally, we discuss the theoretical identifiability of the

model, with formal results provided in the Supplementary Materials.

2.1 Model Setup

The DeepCDM framework is developed to address the need for diagnostic modeling at mul-

tiple granularities. It is formally defined using the terminology of probabilistic graphical

models (Wainwright et al., 2008; Koller and Friedman, 2009), particularly directed graph-

ical models. These models employ graphs to compactly represent the joint distribution of

high-dimensional random variables, where nodes correspond to variables and edges encode

their direct probabilistic relationships.

We first review the definition of a Directed Acyclic Graph (DAG), also referred to as a

Bayesian network (Pearl, 1988). In a DAG, every edge has a direction, and no directed cycles

are allowed. Consider M random variables, X1, . . . , XM , which correspond to M nodes in

the graph. If a directed edge goes from Xℓ to Xm, we say that Xℓ is a parent of Xm, and

Xm is a child of Xℓ. Let pa(m) ⊆ {1, . . . ,M} denote the index set of all parents of Xm.

Define P(Xm | Xpa(m)) as the conditional distribution of Xm given its parents Xpa(m). Based

on this DAG structure, the joint distribution of X1, . . . , XM factorizes as follows:

P(X1, . . . , XM) =
M∏

m=1

P(Xm | Xpa(m)). (1)

We now present the general DeepCDM formulation. For a DeepCDM with D latent

layers, we denote the d-th latent layer as A(d) = (A
(d)
1 , . . . , A

(d)
Kd

) for each d = 1, 2, . . . , D,

where larger d correspond to deeper layers. In DeepCDMs, all edges are directed top-

down and occur only between adjacent layers, defining a generative process from high-level

latent variables to observed responses. Specifically, the bottom layer consists of the observed

response variables for the J items, denoted as R = (R1, . . . , RJ). The first latent layer,

right above the bottom layer, captures the most fine-grained latent attributes, represented

as A(1). These are generated from the second latent layer A(2), and the process continues

recursively up to the deepest layer A(D). Figure 1 gives an example of a DeepCDM with
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three latent layers (D = 3). Given the variables in the layer right above, the variables within

each layer of the DeepCDM are conditionally independent. This structure intuitively models

how more specific latent skills are successively derived from more general, higher-level latent

“meta-skills.” A natural assumption, supported by the model’s identifiability conditions, is

that deeper layers should consist of fewer latent variables, i.e., K1 > K2 > · · · > KD (see

Theorems 1, 2, and 3 in the Supplementary Material for detailed identifiability conditions).

A
(3)
1

· · · A
(3)
K3

A
(2)
1 A

(2)
2

· · · · · · A
(2)
K2

· · · · · ·

· · ·

A
(1)
1 A

(1)
2

· · · · · · · · · · · · · · · A
(1)
K1

R1 R2 · · · · · · · · · · · · · · · · · · · · · · · · · · · RJ

· · · · · · · · · · · · · · ·
Q(1) : J ×K1

Q(2) : K1 ×K2

Q(3) : K2 ×K3

Figure 1: A ladder-shaped three-latent-layer DeepCDM. Gray nodes are observed variables,
and white nodes are latent ones. Multiple layers of binary latent variables A(1), A(2), and
A(3) successively generate the observed binary responses R. Binary matrices Q(1), Q(2), and
Q(3) encode the sparse connection patterns between adjacent layers in the graph.

In traditional CDMs with a single layer of K latent attributes, the Q-matrix (Tatsuoka,

1983) is a fundamental component that specifies the relationship between items and the

latent attributes. Specifically, Q = (qj,k)J×K , where qj,k = 1 if the item j measures the

latent attribute k, and qj,k = 0 otherwise. Since the edges in a graphical model reflect

direct statistical dependencies, qj,k = 1 or 0 also conveys whether the k-th latent node

is a parent of the j-th observed node. Consequently, the Q-matrix encodes the bipartite

graph structure between the observed and latent layers. Extending this idea to DeepCDMs,

with D latent layers, requires D matrices, denoted as Q(1),Q(2), . . . ,Q(D), to capture the

dependence relationships between any two adjacent layers. Specifically, Q(1) =
(
q
(1)
j,k

)
has

size J ×K1, similar to the single Q-matrix in traditional CDM, describes the graph between

the observed data layer and the shallowest latent layer. While for d = 2, . . . , D, the matrix

Q(d) =
(
q
(d)
k,ℓ

)
has size Kd−1 ×Kd and represents the dependencies between latent variables
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in the (d− 1)th and dth latent layers. The entry q
(d)
k,ℓ = 1 or 0 indicates whether the latent

variable A
(d)
ℓ is a parent of A

(d−1)
k . In this paper, we consider the challenging setting of

exploratory DeepCDMs, where all Q-matrices are unknown and need to be estimated.

Based on the general definition of DAGs in (1) and the DeepCDM setup, the joint

distribution of all variables, including the latent ones, is given by:

P(R,A(1), . . . ,A(D)) = P(R | A(1),Q(1)) ·
D∏

d=2

P(A(d−1) | A(d),Q(d)) · P(A(D)), (2)

where P(R = r | A(1),Q(1)) =
J∏

j=1

PCDM(Rj = rj | A(1),Q(1)), and (3)

P(A(d−1) = α(d−1) | A(d),Q(d)) =

Kd−1∏
k=1

PCDM(A
(d−1)
k = α

(d−1)
k | A(d),Q(d)), (4)

where r represents an observed response pattern and α(d−1) represents a latent pattern for

the (d − 1)th latent layer. The superscript “CDM” in the conditional distributions of (3)

and (4) indicates that the conditional distribution within each layer of the generative process

adheres to a CDM. By marginalizing out all latent layers A(1), . . . ,A(D) in (2), we obtain

the marginal distribution of the observed response vector R:

P(R = r) =
∑
α(1)

· · ·
∑
α(D)

P(R = r,A(1) = α(1), . . . ,A(D) = α(D)). (5)

This work focuses on binary observed and latent variables, where r ∈ {0, 1}J and α(d) ∈

{0, 1}Kd . Each observed variable reflects whether a response is correct or incorrect, while each

latent variable indicates the presence or absence of a specific skill or higher-level attribute.

Similar to traditional CDMs, the latent variables A(D) in the deepest layer of a DeepCDM

are modeled using a categorical distribution:

P(A(D) = αℓ) = π(D)
αℓ

, ∀αℓ ∈ {0, 1}KD . (6)

Here,KD > 1. The proportion parameters π
(D)
αℓ are subject to the constraint

∑
αℓ∈{0,1}KD π

(D)
αℓ =

1. With this, we complete the specification of a general DeepCDM.
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2.2 Specific Examples of DeepCDMs

This subsection presents concrete examples of DeepCDMs that fall under the general frame-

work outlined in Section 2.1. For notational convenience, we also denote the observed re-

sponse layer R as A(0), enabling a unified expression for the layerwise conditional distribu-

tions: P(A(d−1) | A(d),Q(d)) for d = 1, . . . , D. We then define specific DeepCDM variants

according to the diagnostic model adopted for each layerwise conditional.

Example 1 (Main-effect DeepCDMs). We use the term “Main-effect DeepCDMs” to refer

broadly to DeepCDMs in which each layerwise conditional distribution follows a main-effect

diagnostic model. In this setup, the probability that A
(d−1)
j = 1 is governed by the main

effects of its parent attributes, modeled via a link function f(·):

P(A(d−1)
j = 1 | A(d) = α,Q(d),β(d)) = f

(
β
(d)
j,0 +

∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

})
. (7)

Here, β
(d)
j,k is nonzero only when q

(d)
j,k = 1. When f is the identity function, Equation (7)

reduces to the Additive Cognitive Diagnosis Model (ACDM; de la Torre, 2011). If f is the

inverse logit function, Equation (7) gives a Logistic Linear Model (LLM; Maris, 1999).

Example 2 (All-effect DeepCDMs). We refer to DeepCDMs in which the layerwise con-

ditionals follow an all-effect diagnostic model as “All-effect DeepCDMs.” In an all-effect

diagnostic model, the probability of A
(d−1)
j = 1 depends on both the main effects and all

possible interaction effects of the parent attributes:

P(A(d−1)
j = 1 | A(d) = α,Q(d),β(d)) = f

(
β
(d)
j,0 +

∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

}
(8)

+
∑

1≤k1<k2≤Kd

β
(d)
j,k1k2

{
q
(d)
j,k1

αk1

}{
q
(d)
j,k2

αk2

}
+ · · ·+ β

(d)
j,12···Kd

∏Kd

k=1

{
q
(d)
j,kαk

})
.

Similar to the main-effect model, not all β-coefficients above are needed. If q
(d)
j , the j-the

row of Q(d), contains Kj entries of “1”, then 2Kj parameters are required in (8). With the

identity link function, (8) defines the Generalized DINA model (GDINA; de la Torre, 2011),

while the inverse logit function yields the Log-linear CDM (LCDM; Henson et al., 2009).
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Example 3 (DeepDINA). The DINA model can be regarded as a special case of the all-

effect CDM, where only the highest-order interaction term among the required attributes is

retained, and all lower-order effects are constrained to zero:

PDINA(A
(d−1)
j = 1 | A(d) = α,Q(d),β(d)) = f

(
β
(d)
j,0 + β

j,K(d)
j

∏
k∈K(d)

j

q
(d)
j,kαk

)
, (9)

where K(d)
j =

{
k ∈ [K]; q

(d)
jk = 1

}
denotes the set of attributes measured by item j. The

model assumes that students are capable of an item only if they master all required attributes

for that item. So, β
j,K(d)

j
is the only non-zero coefficient for item j in layer d.

One can also specify a DeepDINO model, a specific type of DeepCDM where the DINO

model is used to model each latent layer (Gu, 2024). Due to the duality between DINA

and DINO, the identifiability and algorithm applicable to DeepDINA are also applicable to

DeepDINO. Therefore, we do not introduce it here and refer readers to Gu (2024) for details.

Example 4 (Hybrid DeepCDMs). A key strength of the DeepCDM framework is its flexibil-

ity in allowing different diagnostic models (e.g., DINA, main-effect, all-effect) to be applied

across various layers. This is referred as Hybrid DeepCDMs, which strike a balance between

model complexity and parsimony, offering flexibility in designing diagnostic models based

on specific needs. For instance, in practical scenarios, the most general all-effect diagnostic

model may be used at the bottom layer to model how fine-grained attributes affect the ob-

served responses, while simpler models like main-effect or DINA could be applied in deeper

layers to enhance interpretability and reduce complexity.

As demonstrated earlier, only particular coefficients, determined by the Q-matrices and

the specified measurement models, in the generating DeepCDM should be non-zero. How-

ever, since all Q-matrices, Q(d), d = 1, . . . , D, are unknown, the sparsity pattern of the

coefficient vectors is also unknown. Therefore, we assume all coefficients in the model as

unknown and estimate them by maximizing a regularized log-likelihood. The Q-matrices

can then be inferred by identifying the non-zero coefficients in β(d), d = 1, . . . , D. We defer

the details of the mechanism for identifying the entries q
(d)
jk to Section 3.2.
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2.3 DeepCDMs as Deep Generative Models (DGMs)

As previously mentioned, the DeepCDM framework can be viewed as an adaptation of DGMs

for psychometrics and educational measurement, where additional structural constraints

are introduced to enable diagnostic feedback. Exploratory DeepCDMs share architectural

similarities with several existing DGMs. For example, when the activation function f is

defined as the inverse logit, DeepCDMs resemble DBNs (Hinton et al., 2006) with binary-

valued hidden units. However, a key structural difference lies at the top of the network: DBNs

assume an undirected graph between the top two layers—forming an restricted Boltzmann

machine (RBM) —while DeepCDMs adopt a fully directed, top-down architecture across all

layers. This design enables DBNs to use a heuristic greedy layer-wise pretraining procedure

based on contrastive divergence, a technique specific to training undirected models such as

RBMs (Hinton et al., 2006; Hinton and Salakhutdinov, 2006). Consequently, such training

strategies are not directly applicable to DeepCDMs due to its directed nature, which is more

interpretable for modeling hierarchical skill generation.

DeepCDMs also share a top-down generative structure with DEFs (Ranganath et al.,

2015), an unsupervised framework using exponential family distributions to model each

layer’s conditional distribution. DEFs aim to capture compositional semantics through hi-

erarchical latent representations. However, DEFs rely on black-box variational inference

methods with neural network–based posterior approximations, which prevent recovery of

interpretable parameters—such as Q-matrices—and thus cannot provide individualized di-

agnostic feedback, a central aspect of cognitive diagnosis.

Another related framework is the deep discrete encoders (DDE; Lee and Gu 2025), a deep

generative model designed for rich data types with discrete latent layers. While DDEs and

DeepCDMs share architectural and identifiability properties, their goals differ. DDEs aim

to address machine learning concerns like overparameterization and lack of interpretability,

constructing general-purpose identifiable DGMs. In contrast, DeepCDMs are specifically

designed for psychometrics, with each adjacent pair of latent layers constituting a CDM.

This structure allows for diagnostic-specific measurement assumptions, addressing varied

diagnostic goals and enhancing usability in real-world assessment settings.
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Taken together, these distinctions highlight the unique features of exploratory Deep-

CDMs over conventional DGMs. While most DGMs prioritize data generation or predictive

performance and typically lack identifiability and sparsity constraints, DeepCDMs refocus

the modeling effort on offering reliable individualized diagnostic feedback and discovering

hierarchical latent skill structures. Furthermore, by enforcing sparsity in the coefficient ma-

trices to reflect item–attribute relationships, DeepCDMs provide valuable insights into test

design—an essential feature for practical use in educational and psychological assessment,

often overlooked in classical DGM frameworks.

2.4 Identifiability

As noted earlier, a key strength of DeepCDMs lies in their formal identifiability guarantees,

which apply to both confirmatory and exploratory settings (Gu, 2024). These results are

detailed in the Supplementary Materials. In brief, the identification conditions impose ex-

plicit structural constraints on the between-layer Q-matrices, offering practical guidance for

model design and implementation. Although the specific conditions vary across diagnostic

models, they consistently require an increasingly shrinking latent structure for deeper lay-

ers. That is, the number of latent variables typically decreases with depth, often subject to

constraints such as Kd > c · Kd+1 for some constant c > 1 depending on the model. This

hierarchy reflects the principle of statistical parsimony in DeepCDMs. For instance, in a

two-layer DeepDINA model with K1 = 7 and K2 = 2, the number of nonzero parameters

is 2K1 + 2K2 − 1 = 17, compared to 2K1 − 1 = 127 in a saturated attribute model without

higher-order latent structure. Such substantial reductions in complexity make DeepCDMs

especially attractive for applications with fine-grained latent attributes and limited sample

sizes. In exploratory settings, while all parameters must be estimated, the identifiability

conditions naturally promote sparsity in the true generating model, facilitating parameter

recovery and interpretation of the latent attributes.

A central insight underlying these proofs is that the identifiability of DeepCDMs can be

established in a layer-by-layer fashion, proceeding from the bottom (shallow) layer to the

top (deepest) layer. This approach is justified by the directed nature of the graphical model

and the discreteness of latent variables. Two core ideas facilitate this stepwise identifiability.
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First, in a multi-layer directed graphical model with only top-down connections between

adjacent layers, marginalizing out deeper latent layers yields a Restricted Latent Class Model

(RLCM) (Xu, 2017; Gu and Xu, 2020). Once the distribution of the shallowest latent

layer is identified through this RLCM, it can be treated theoretically as if observed for

identifying the next deeper layer. Second, identifiability in RLCMs holds for any marginal

distribution of latent attributes, provided the Q-matrix meets specific conditions. This

property allows identifiability to propagate upward through layers, even when deeper latent

variables introduce complex dependencies.

3 Proposed Estimation Algorithms

In this section, we propose a novel layer-wise EM algorithm for estimating exploratory Deep-

CDMs. We begin by introducing some notation. Let R1:N denote the response data ma-

trix of size N × J , representing the observed responses of N students to J items. Let

β = (β(1), . . . ,β(D)) and Q = (Q(1), . . . ,Q(D)) denote the sets of continuous parameters

and Q-matrices across all layers, respectively. Let π(d) denote a vector composed of the

probability mass function πd,α(d) = P(A(d) = α(d)) for all α(d) ∈ {0, 1}Kd , d = 1, 2, . . . , D.

The parameters to be estimated include all continuous parameters in β, all Q-matrices in

Q, and the proportion parameter π(D) for the deepest latent layer. Directly maximizing the

marginalized log-likelihood to estimate the Q-matrices is computationally prohibitive, even

when the number of layers D and the dimensionalities Kd (d = 0, 1, . . . , D;K0 = J) are

of moderate size. This challenge arises from the need to search over an enormous space of

possible Q-matrix configurations—specifically,
∏D

d=1 2
Kd−1·Kd combinations—each requiring

evaluation of a profile likelihood. To circumvent this combinatorial burden, we instead frame

Q-matrix estimation as a structured model selection task, addressed through a regularized

likelihood approach that encourages sparsity in the parameter space (Chen et al., 2015).

The regularized marginal log-likelihood is given by:

ℓ(β,π(D),Q | R1:N) =
N∑
i=1

log

{∑
α(1)

· · ·
∑
α(D)

[
P(Ri | A(1),Q(1),β(1))
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·
D∏

d=2

P(A(d−1) | A(d),Q(d),β(d)) · P(A(D);π(D))
]}

−N · Ps(β), (10)

where the L1 penalty function Ps(β) enforces sparsity across layers and is defined as

Ps(β) =
D∑

d=1

Ps(β
(d)) =

D∑
d=1

sd
∑

β
(d)
j,k∈β(d)

∣∣∣β(d)
j,k

∣∣∣ . (11)

Here, sd denotes the regularization parameter for layer d, and each β(d) represents the set

of model-specific coefficient parameters at that layer, with its structure determined by the

chosen measurement model (e.g., main-effect, all-effect, or DINA), as detailed in Section 2.2.

The nested summation over multiple layers of latent attributes in (10) renders direct

optimization infeasible. While the classical EM algorithm offers a principled framework for

estimating exploratory DeepCDMs, it is not without limitations. In practice, its effectiveness

can be hindered by the model’s structural complexity and the high dimensionality of the

parameter space. These challenges—stemming from the layered latent architecture and the

combinatorial nature of Q-matrix estimation—can increase sensitivity to initialization and

compromise the scalability and stability of the algorithm. A more detailed discussion of these

shortcomings is provided in Section 3.4. These considerations motivate our development of

the layer-wise EM algorithm, introduced in the following section.

In the remainder of this section, we first introduce the classical EM algorithm and briefly

discuss its limitations in Subsection 3.1. The proposed layer-wise EM algorithm is presented

in Subsection 3.2, followed by the initialization strategy in Subsection 3.3. Subsection 3.4

highlights the advantages of the layer-wise EM over the classical EM algorithm. Subsec-

tion 3.5 discusses how the layer-wise concept connects to broader principles and algorithms,

including identifiability derivation and related methods for DGMs. Finally, Subsection 3.6

discusses the extension of the layer-wise EM to the confirmatory DeepCDM setting.
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3.1 The EM Algorithm

Let A1:N = (A
(1)
1:N , . . . ,A

(D)
1:N) denote the set of latent variables, i.e., the attribute profiles of

the N students across D latent layers. The complete data log-likelihood is:

lDeepCDM
c (β,π(D),Q|R1:N ,A1:N)

= log

(
P(R1:N | A(1)

1:N ,Q
(1),β(1)) ·

D∏
d=2

P(A(d−1)
1:N | A(d)

1:N ,Q
(d),β(d)) · P(A(D)

1:N ;π
(D))

)
. (12)

Let β(t−1) = (β(1,t−1), . . . ,β(D,t−1)), π(D,t−1), and Q(t−1) = (Q(1,t−1), . . . ,Q(D,t−1)) denote

the estimates of β, π(D), and Q obtained at iteration t − 1. In each iteration t of the EM

algorithm, the following two steps are performed:

E-Step: Compute

Q̃(t) = E(A(1),...,A(D))[l
DeepCDM
c (β,π(D),Q|R1:N ,A1:N)|R1:N ;β

(t−1),π(D,t−1),Q(t−1)], (13)

where the conditional expectation is with respect to P(A(1), . . . ,A(D)|R1:N ;β
(t−1),π(D,t−1),Q(t−1)).

M-Step: Update

(
β(t),π(D,t),Q(t)

)
= arg max

β,Q
Q̃(t) −N · Ps(β), (14)

where Ps(β) is defined in Equation (11).

For each d = 1, 2, . . . , D, define Ã1:d = (A(1), . . . ,A(d)), which denote the latent variables

shallower than the (d+1)th latent layer. Define A(0) = R1:N , and A(D+1) = ∅. According to

the conditional independence, the expectation computation in the E-step can be re-expressed

as Q̃(t) =
∑D+1

d=1 Q̃(d,t), with

Q̃(d,t) = EÃ1:d [logP (A
(d−1)
1:N |A(d)

1:N)|R1:N ,β
(t−1),π

(t−1)
D ,Q(t−1)]

=
∑N

i=1 EÃ1:d [logP (A(d−1)|A(d))|Ri,β
(t−1),π

(t−1)
D ,Q(t−1)] (15)

That is, Q̃(t) is decomposed as a summation over layers d and individuals i, where each term

is the conditional expectation of logP (A(d−1) | A(d)) with respect to the partial posterior
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distribution P (A(1), . . . ,A(d) | Ri,β
(t−1),π

(t−1)
D ,Q(t−1)), which we denote by P̃ 1:d

i for brevity.

Accordingly, the optimization in M-step can be broken into the following parts,

(β(d,t),Q(d,t)) = arg max
β(d),Q(d)

Q̃(d,t) −N · Ps(β
(d)), d = 1, . . . , D. (16)

π(D,t) = arg max
∑
α(D)

N∑
i=1

log(P(A(D) = α(D)))×

∑
(α(1),...,α(D−1))

P
(
A

(1)
i = α(1),A

(2)
i = α(2), . . . ,A

(D)
i = α(D)|Ri;β

(t−1),π
(t−1)
D ,Q(t−1)

)
(17)

This decomposition enables the parameters at each layer to be updated via their correspond-

ing optimization problems in (16) and (17), thereby improving the tractability of the M-step.

Next, we further look into the Q̃(d,t) functions. Recall that P̃ 1:d
i is defined as:

P̃ 1:d
i := P (Ã1:d | Ri,β

(t−1),π
(t−1)
D ,Q(t−1)) =

P (Ri | A(1))P (Ã1:d)∑
Ã1:d P (Ri | A(1))P (Ã1:d)

, (18)

with

P (Ã1:d) =
∑

α(d+1),...,α(D)

P
(
A(1), . . . ,A(d) | A(d+1) = α(d+1),β(t−1)

)
×

P
(
A(d+1) = α(d+1), . . . ,A(D) = α(D);β(t−1)

)
. (19)

As shown, given the parameters from the previous iteration (t − 1), the distribution

P (Ã1:d) is computed by marginalizing out the deeper latent variables A(d+1), . . . ,A(D) from

the joint distribution over all latent variables. This marginal, together with the observed

response Ri, allows us to evaluate the partial posterior distribution P̃ 1:d
i via Equation (18).

With P̃ 1:d
i providing the weights for each possible configuration of Ã1:d, the conditional ex-

pectation in Q̃(d,t) can be computed as a weighted sum over logP (A(d−1) | A(d)). Specifically,

Equation (15) can be written out as:

Q̃(1,t) =
N∑
i=1

∑
A(1)

logP (Ri|A(1))P̃ 1:1
i ; (20)
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and

Q̃(d,t) =
∑
Ã1:d

logP (A(d−1)|A(d))
N∑
i=1

P̃ 1:d
i =

∑
(A(d−1),A(d))

logP (A(d−1)|A(d))
N∑
i=1

∑
Ã1:d\{A(d−1),A(d)}

P̃ 1:d
i , (21)

for d = 2, . . . , D. It turns out that, for each d, Equation (16) defines a regularized optimiza-

tion problem whose objective includes a weighted log-likelihood component over (A(d−1),A(d))

pairs. In this formulation, A(d−1) serves as the outcome, A(d) as the predictor, and the data

point weights are given by
∑N

i=1

∑
Ã1:d\{A(d−1),A(d)} P̃

1:d
i .

We focus on the case where the link function f(·) is the inverse logit, as it is the most

commonly used choice for CDMs with binary responses. In this setting, the estimation

problem corresponds to a generalized linear optimization problem with a logit link. For other

choices of f(·), the problem may fall into the broader categories of linear or generalized linear

optimization, depending on the specific functional form. The solution of Equation (17) is

that for ∀α(D) ∈ {0, 1}KD :

π
(D,t)

α(D) =
N∑
i=1

∑
A(1),...,A(D−1)

P (Ri|A(1))P (A(1), . . . ,A(D−1),A(D) = α(D))

N ·
∑

A(1),...,A(D) P (Ri|A(1))P (A(1), . . . ,A(D−1),A(D))
. (22)

These derivations demonstrate that, due to conditional independence, the EM algorithm for

exploratory DeepCDMs is both succinct and transparent. However, its practical feasibility is

challenged by several issues—particularly sensitivity to initialization and the accumulation

of estimation bias across layers and iterations. To address these challenges, we next propose

a layer-wise EM algorithm below.

3.2 A Novel Layer-wise EM Algorithm

To elucidate the underlying rationale of the proposed algorithm, we first provide a detailed

mathematical derivation of the layer-wise EM procedure. This step-by-step formulation

highlights how the algorithm naturally arises from the hierarchical structure of DeepCDMs.

Suppose we have a set of parameters β,π(D),Q that maximize the regularized marginal

log-likelihood in Equation (10). Based on the generative formulation of DeepCDMs, we can
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marginalize out the deeper latent variables A(2), . . . ,A(D) to derive the implied distribution

of the bottom-layer attributes:

π(1) = P(A(1);π(1)) =
∑
α(2)

· · ·
∑
α(D)

[ D∏
d=2

P(A(d−1) | A(d),Q(d),β(d)) · P(A(D);π(D))
]
.

This recursive marginalization induces a set of shallow-layer parameters (β(1),π(1),Q(1)),

which, when substituted into the original model, must also maximize a re-expressed form of

the target function:

ℓ(β,π(1),Q | R1:N) =
N∑
i=1

log

{∑
α(1)

[
P(Ri | A(1),Q(1),β(1)) · P(A(1);π(1))

]}
−N · Ps(β).

This observation forms the conceptual basis of our proposed layer-wise EM algorithm. Rather

than estimating all parameters jointly over the entire deep latent architecture, we decompose

the problem into a sequence of simpler subproblems, each involving a one-layer structure, and

solve them in a bottom-up manner using EM. Although the resulting algorithm appears in-

tuitive, it is grounded in a rigorous use of the model’s generative structure. Specifically, each

layer-wise step leverages the most reliable information from its immediate lower layer—either

in the form of estimated distributions or pseudo-observations—making the estimation pro-

cess both computationally efficient and statistically reliable.

Focusing on the first layer (d = 1), this decomposition implies that the estimates β(1) and

Q(1) obtained by maximizing Equation (10) are identical to those obtained under a standard

one-layer CDM. Once these first-layer parameters are estimated, the task reduces to esti-

mating the parameters for the remaining D−1 latent layers. Unlike the first layer, however,

there are no observed realizations of the latent variable A(1). Let A
(1)
i denote the i-th row

of A
(1)
1:N . A straightforward way to impute A

(1)
i is via the Maximum A Posteriori (MAP) es-

timate: Â
(1)
i = argmaxα(1)∈{0,1}K1 P(A(1)

i = α(1) | Ri,β
(1),Q(1)), which depends on both the

likelihood P(Ri | A(1)
i ,β(1),Q(1)) and the prior P(A(1)

i ). Alternatively, one can sample from

the estimated marginal distribution P(A(1)) to generate pseudo-observations for the next

layer. Compared to MAP, this sampling-based approach introduces less bias and leads to

more reliable parameter estimation in deeper layers, particularly during initialization. With
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these pseudo-observations in hand, the remaining D − 1 layers form a structurally similar

DeepCDM, and the same one-layer EM algorithm can be recursively applied to estimate β(2)

and Q(2), and so on, until the top layer is reached.

The above layer-wise EM algorithm is summarized in Algorithm 1. Proceeding from

the bottom up, the algorithm estimates model parameters layer by layer. For each layer

d > 1, Step 1 imputes the missing data A(d−1) by drawing samples from the estimated

marginal distribution P (A(d−1)), which is computed in Step 3 of the previous layer using

Equation (23). In contrast, for the first latent layer (d = 1), Step 1 is not required because

the observed response data R1:N (i.e., A(0)) serve directly as the input. Using the initial

values obtained in Step 2, Step 3 then applies a one-layer EM algorithm with Kd attributes

to estimate the parameters β(d), Q(d), and π(d). The initialization procedure is introduced

separately in Section 3.3. In Step 3, each M1-step is solved using the coordinate descent

algorithm of Friedman et al. (2010), known for its flexibility and effectiveness in handling

regularized optimization problems. The algorithm continues this layer-wise procedure until

reaching the deepest layer D.

In M2-step, the mechanism for identifying the entries q
(d)
jk in Q(d) varies across different

measurement models, according to the measurement model utilized in layer d. For main-

effect-model, Q(d) can be recovered using the rule q
(d)
jk = 1(β

(d)
j,k ̸= 0), where 1 is the indicator

function. For all-effect model, theoretically, each row of Q(d) should be identified by the

highest-order non-zero coefficient. Specifically, if ∃S ⊆ [K] such that β
(d)
j,S ̸= 0 and β

(d)
j,S′ = 0

for all S ′ ⊆ [K], S ⊂ S ′, then q
(d)
jk = 1 for k ∈ S; otherwise, q

(d)
jk = 0. However, this strict rule

may not be always applicable because some estimated β-coefficients may be close to zero

but not exactly zero. In practice, a more effective approach is either to choose the largest

non-zero interaction coefficient or to truncate the coefficients before identifying Q(d). For

the latter approach, we recommend practitioners set the truncation thresholds based on the

general magnitude of their estimated coefficients. For the DINA model, since there should

be only one non-zero coefficient for each item j, the largest non-zero interaction coefficient

can be selected, and the corresponding q
(d)
jk can be identified as equal to one.
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Algorithm 1 Layer-wise EM Algorithm for the DeepCDMs

Input: Response matrix R1:N , number of layers D, number of attributes Kd for each layer
d = 1, . . . , D. Set A(0) = R1:N .
For each layer d = 1, . . . , D, do:

1. Impute data: If d > 1, draw N samples of A(d−1) from the sample space {0, 1}2
Kd−1

according to π(d−1) obtained in the d− 1-th step. These samples will be imputed as data
for A(d−1) in the following calculations.
2. Initialization: Using A(d−1) as input data, apply the USVT-based estimator in
Algorithm 2 to obtain the initial values of β(d) .
3. EM algorithm for the d-th layer: Repeat the following steps until convergence
(starting from td = 1):

• E-Step: Compute Q̃(d,td) as defined in Equation (15) using Equations (18)-(21).

• M-Step:

M1. Apply the coordinate descent algorithm to solve the optimization problem
defined in Equations (16), yielding updated estimates β(d,td).

M2. Estimate Q(d) as Q(d,td) by identifying the sparse pattern in β(d,td).

M3. For each α(d) ∈ {0, 1}Kd , update entries in π(d) as follows:

π
(d,td)

α(d) =
N∑
i=1

P (A(d−1)|A(d) = α(d))π
(d,td−1)

α(d)

N ·
∑

A(d) P (A(d−1)|A(d))π
(d,td−1)

α(d)

. (23)

Output: The updated parameters β̂ = (β(1,t1), . . . ,β(D,tD)), Q̂ = (Q(1,t1), . . . ,Q(D,tD)), and
π̂ = (π̂(1,t1), . . . , π̂(D,tD)).

3.3 Initialization Algorithm

As shown in Algorithm 1, the initialization of our DeepCDM method is performed sequen-

tially in D steps, where parameters from the d-th latent layer is initialized after estimating

the (d − 1)-th layer. This approach leverages the information from the estimated distribu-

tion P (A(d−1)), obtained during the fitting of the (d − 1)-th layer, to provide better initial

values for the d-th layer. Furthermore, by imputing realizations of A(d−1) sampled from the

estimated P (A(d−1)), the initializations of all laysers reduce to the problem of initializing

a one-layer CDM. Specifically, the response data R1:N is used for the first layer (d = 1),

while realizations of A(d) (i.e., the generated pseudo-samples) are used for subsequent layers
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(d > 1). For exploratory DeepCDMs, good initial values should not only be close to the true

values but also exhibit a sparse structure similar to the true ones. To achieve this, we apply a

method based on USVT (Chatterjee, 2015; Zhang et al., 2020) to estimate the design matrix,

followed by a Varimax rotation to promote sparsity. USVT captures the dominant low-rank

structure, while Varimax produces a sparse loading pattern that informs the initialQ-matrix.

This combination provides informative starting values tailored to the exploratory framework

of DeepCDMs. The initialization procedure for each layer d is detailed in Algorithm 2.

Algorithm 2 applies SVD twice. The first application, combined with the inverse trans-

formation (Steps 2-5), is used to denoise and linearize the data. The second application of

SVD (Steps 6-7) is performed on the linearized data. Since the loading matrix can only

be recovered up to an oblique rotation, analytical methods are needed to resolve the rota-

tional indeterminacy. To address this, we apply Varimax rotation (Kaiser, 1958) in Step

8, a widely used method for obtaining interpretable solutions that has also been justified

for enabling statistical inference (Rohe and Zeng, 2023). More importantly, in our context,

Varimax is particularly crucial for recovering sparse coefficient structures consistent with the

model’s identifiability conditions. Note that SVD does not directly recover the binary latent

attribute structure. As a result, while it effectively captures the sparse pattern encoded in

Ĝ1 (Step 9), the estimated loading matrix Ṽ may differ from the true one in scale. This

issue is addressed by exploiting the discreteness of the latent variables in Â(d) to rescale β(d)

(Lee and Gu, 2025), as shown in Steps 10-11. This initialization procedure is non-iterative,

making it computationally efficient. Moreover, it avoids convergence issues and possesses

favorable statistical consistency properties (Zhang et al., 2020).

3.4 Advantages of layer-wise EM compared to EM

As discussed in Hinton et al. (2006), an effective way to learn complex models is by se-

quentially combining simpler models. The layer-wise EM algorithm applies this principle by

breaking down the optimization process into manageable subproblems, each targeting one

layer at a time. This strategy helps overcome the key challenges faced by the classical EM

algorithm when applied to DeepCDMs.

One major challenge in applying the classical EM algorithm to DeepCDMs is the dif-
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Algorithm 2 USVT-Based Initialization Procedure for Layer d

1. Input: The N ×Kd−1 data matrix A(d−1), the number of attributes Kd, the function
f(·), and a truncation parameter ϵN,Kd−1

> 0.

2. Apply SVD to A(d−1) =
∑Kd−1

j=1 τjujvj
⊤, where τ1 ≥ τ2 ≥ . . . τKd−1

are the singular
values, and ujs and vjs are left and right singular vectors, respectively.

3. Let X = (xij)N×Kd−1
=
∑K̃d

k=1 τkukvk
⊤, where

K̃d = max
{
Kd + 1, argmaxk

{
τk ≥ 1.01

√
N
}}

.

4. Let X̂ = (x̂ij)N×Kd−1
be defined as

x̂ij =


ϵN,Kd−1

if xij < ϵN,Kd−1

xij if ϵN,Kd−1
≤ xij ≤ 1− ϵN,Kd−1

1− ϵN,Kd−1
if xij ≥ 1− ϵN,Kd−1

5. Let M̃ = (m̃ij)N×Kd−1
, where m̃ij = f(x̂ij).

6. Let β̂
(d)
0 = (β̂

(d)
1,0 , . . . , β̂

(d)
j,0 , . . . , β̂

(d)
Kd−1,0

), where β̂
(d)
j,0 = (

∑N
i=1 m̃ij)/N , j = 1, . . . , Kd−1.

7. Apply singular value decomposition to M̂ = (m̃ij − β̂
(d)
j,0 )N×Kd−1

to have

M̂ =
∑Kd−1

j=1 τ̂jûjv̂j, where τ̂1 ≥ τ̂2 ≥ . . . τ̂Kd−1
are the singular values, and ûjs and v̂js

are left and right singular vectors, respectively.

8. Apply varimax to V̂ = (v̂1, . . . , v̂Kd−1
), and let Ṽ be the rotated version of V̂.

9. Threshold Ṽ at 1

2
√

Kd−1

to induce sparsity, and also adjust the column-wise sign flip

and rotation. Let Ĝ1 be the estimated sparsity pattern.

10. Estimate A0 by Â0 := M̂Ṽ(Ṽ⊤Ṽ)−1. Use this to estimate Â(d) = (Â
(d)
i,k )N×Kd

:

Â
(d)
i,k = 1(A0

i,k > 0).

11. Estimate β1
(d) by β̂

(d)
1 =

(
γscale ·

(
Â(d)⊤Â(d)

)−1

Â(d)⊤M̂

)
Ĝ1. Here, γscale is an

artificial shrinkage factor we introduce to adjust the scale of β̂
(d)
1 , and · is the

element-wise product.

12. Output β̂(d) = (β̂
(d)
0 , β̂

(d)
1 ).
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ficulty of initialization. The presence of multiple nonlinear latent layers creates a highly

nonconvex optimization landscape, often with an exponential number of local optima. As a

result, EM is sensitive to starting values—poor initialization can easily lead to convergence

at suboptimal local maxima of the penalized log-likelihood function. In the classical EM

algorithm, initial values for all parameters across all layers must be specified simultaneously.

As the model depth increases, this becomes increasingly challenging, even for moderately

deep architectures, due to compounded uncertainty and parameter interactions across layers.

In contrast, our layer-wise EM algorithm addresses initialization sequentially by solving one-

layer CDMs one at a time. At each stage, it initializes the parameters of the current layer

using either observed responses or sampled latent attributes from the estimated marginal

distribution informed by the shallower layers. Since these samples are based on estimated

proportion parameters which are proved to be identifiable, the initialization for deeper layers

is more stable and reliable.

Another major issue of the classical EM algorithm is the accumulation of estimation

bias as the algorithm progresses through multiple layers. As the number of latent layers

D increases, the computation of quantities like
∑N

i=1 P̃
1:d
i for d = 1, . . . , D becomes more

error-prone. These quantities play a crucial role in the M-step, and inaccuracies in their

estimation directly affect parameter updates. Furthermore, the iterative nature of the clas-

sical EM algorithm introduces a cyclic dependency across all layers, where errors at one

layer can propagate forward and backward, reinforcing one another over iterations. This

compounding effect often leads the algorithm to converge to suboptimal local maxima, even

when reasonably good initial values are provided. In contrast, our proposed layer-wise EM

algorithm mitigates this issue by breaking the dependency cycle. Parameters are estimated

sequentially from the bottom layer up, so each layer d is only influenced by the estimates

from shallower layers d′ < d. Although some bias may still accumulate, it originates solely

from estimation errors in previous layers—not from compounded initialization errors across

all layers. This directional, non-cyclic structure significantly reduces the accumulation of

error and enhances the robustness of the estimation process.
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3.5 Connections to Broader Principles and Algorithms

3.5.1 Connections between the Layer-wise EM and Identifiability

Interestingly, the derivation of the layer-wise EM algorithm aligns with and supports the

technical insights in the identifiability proofs of DeepCDMs. The identifiability results in

the Supplementary Material and in Gu (2024) demonstrate that identifiability of a DeepCDM

can be examined and established in a layer-by-layer manner, proceeding from the bottom

up. This follows from the probabilistic formulation of the directed graphical model and the

discrete nature of the latent layers. For each layer d ∈ {0, 1, . . . , D − 1}, as long as Q(d+1)

satisfies the corresponding identifiability conditions for the one-layer CDM implied by

P(A(d)) =
∑

α(d+1)∈{0,1}Kd+1

P(A(d) | A(d+1) = α(d+1),Q(d+1),θ(d+1)) · P(A(d+1) = α(d+1)), (24)

the parameter set (β(d+1),Q(d+1),π(d+1)) is identifiable. The identifiability of the marginal

distribution of A(d+1) (i.e., π(d+1)) allows it to be treated theoretically as if it were observed

when examining the identifiability for Q(d+2), β(d+2), and the marginal distribution of A(d+2).

Starting from the observed data layer (d = 0) and proceeding one layer at a time, the

identifiability of DeepCDMs can thus be inductively established.

This layer-wise identifiability rationale supports the procedure of generating samples of

A(d+1) when estimating parameters of the d-th layer, for each d. Specifically, the identi-

fiability of the model at layer d, as shown in Equation (24), implies that the distribution

P(A(d+1)), from which samples of A(d+1) are drawn, can be uniquely identified. This theo-

retical guarantee justifies treating the sampled A(d+1) as observed data in the EM algorithm.

The same procedure is applied recursively to the remaining D − 1 layers.

3.5.2 Connections to Related Algorithms for DGMs

The idea of training deep models in a layer-wise fashion has been widely explored across the

deep generative modeling literature, and our layer-wise EM algorithm draws on this founda-

tional principle. For instance, in DBNs, greedy layer-wise pretraining trains each layer locally

as a RBM using contrastive divergence (Hinton et al., 2006). This approach improves opti-
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mization stability and scalability, particularly in deep models where global joint training is

challenging. While DeepCDMs differ from DBNs in having a fully directed architecture and

an emphasis on interpretability and identifiability, our method similarly decomposes model

training into a sequence of tractable subproblems. DEFs (Ranganath et al., 2015) also adopt

a hierarchical top-down structure and rely on recursive variational inference across layers.

Although our inference uses EM rather than variational methods, both approaches share the

advantage of progressing layer by layer, with each layer conditioned on information derived

from the previous one. Our idea also resonates with the framework of modular Bayesian

learning (Segal et al., 2005; Joshi et al., 2009), in which large models are decomposed into

smaller, interpretable modules that can be estimated sequentially. By aligning with these

broader principles, the proposed layer-wise EM adapts a widely used idea—local, modu-

lar, progressive learning—for the structured and interpretable setting of cognitive diagnosis,

where both identifiability and individualized feedback are essential.

3.6 Extending to Confirmatory DeepCDMs

The layer-wise EM algorithm can be easily modified to fit confirmatory DeepCDMs, which

assume allQ-matrices are known. In this case, each M-step solves the following optimization:

β(d,t) = arg max
β(d)

Q̃(d,t), d = 1, . . . , D (25)

Compared to Equation (16), the terms N · Ps(β
(d)) are dropped, as all the Q-matrices are

known and do not need to be estimated. This makes the confirmatory case simpler than

the exploratory case we have focused on. The layer-wise algorithm in Algorithm 1 can

be readily used for parameter estimation, incorporating the known Q-matrices during the

implementation of coordinate descent in the M-step.

The adaptation of the layer-wise EM algorithm for the confirmatory case is also a novel

contribution, representing the first EM-type algorithm for confirmatory DeepCDMs. Unlike

the Bayesian approach in Gu (2024), which fits models using an MCMC algorithm that

can involve slower convergence and the need for prior specification, the layer-wise EM algo-

rithm offers a computationally more efficient alternative by directly seeking the maximum
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likelihood estimator. We point out that the layer-wise EM method could also be extended

to incorporate prior distributions for computing maximum posterior estimates, should rich

prior information be available, following the approach outlined in Gu (2024).

4 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed

layer-wise EM algorithm for exploratory DeepCDMs. Specifically, we consider a three-layer

DeepCDM (D = 3) with the configuration (J,K1, K2, K3) = (30, 8, 4, 2), which represents a

challenging scenario due to the large depth with three latent layers and the need to estimate

all three unknown Q-matrices across different layers. Three different measurement models

are considered for the shallowest layer (d = 1): the main-effect model, the all-effect model,

and the DINA model. The more parsimonious main-effect model is used to model the two

deeper layers (d = 2, 3). We denote these three simulation cases as the Main-effect case, All-

effect case, and DINA case, respectively. Under each case, three sample sizes—N = 1000,

1500, and 2000—are considered. The true Q-matrices are specified in Equation (26) and

satisfy the minimal identifiability conditions required for DeepCDMs.

Q
(1)
30×8 =



I8

I8

I8

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


, Q

(2)
8×4 =

(
I4

I4

)
, Q

(3)
4×2 =

(
I2

I2

)
. (26)

The USVT-based estimator described in Algorithm 2 is used for initialization. The coor-

dinate descent algorithm is implemented using the R package glmnet (Hastie et al., 2021) for

optimization. The true coefficient values of β(1), β(2), and β(3) are presented in the follow-

ing subsections for each simulation case, where β(1) is set to be larger than those of the two

deeper layers, β(2) and β(3). In CDM, larger coefficient values indicate a stronger relationship
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between latent attributes and responses. Therefore, by specifying smaller coefficients for the

deeper layers, we introduce more randomness into this relationship. This design reflects the

increased uncertainty and complexity involved in mastering higher-level cognitive attributes

in psychological or educational assessments. For each d-th layer (d = 1, 2, 3), the layer-wise

EM algorithm uses the convergence criterion max
∣∣β(d,t) − β(d,t−1)

∣∣ < ϵd over three successive

iterations. In this simulation, the thresholds are set as (ϵ1, ϵ2, ϵ3) = (4−2, 10−3, 10−3). A more

relaxed threshold is used for the first layer to accommodate its relatively larger number of

parameters, as it involves both a larger size of Q-matrix (Q
(1)
30×8) and larger coefficient values

in β(1) compared to the other two deeper layers. This setting ensures stable convergence

while maintaining computational efficiency in high-dimensional estimation. For each simu-

lation case, 100 independent replications are conducted. In each replication, the layer-wise

EM algorithm is applied to fit the model across a range of regularization parameters, and

the one that yields the smallest BIC value is selected for final model fitting. The specific

regularization sequences are provided in the Supplementary Material. Root Mean Squared

Errors (RMSE) and absolute biases (aBias) are computed to assess estimation accuracy.

Note that the true parameter values differ in magnitude across the three layers, making

the RMSE and aBias values not directly comparable. To address this, we report RMSE

and aBias for two additional metrics that evaluate the performance of the layer-wise EM

algorithm from different perspectives and provide indices that are comparable across layers.

The first index is the latent class proportion distribution π(d), whose parameter space is

defined as ∆2Kd−1 =
{
π
(d)
αℓ :

∑2Kd

ℓ=1 π
(d)
αℓ = 1, π

(d)
αℓ > 0

}
, where π

(d)
αℓ = P (A(d) = αℓ) and αℓ ∈

{0, 1}Kd for each layer d = 1, . . . , D. This metric assesses how accurately the model recovers

the true distribution of latent attributes at each layer. The second index is the correct

response probability for each layer d, denoted as P
(d)
CR, and defined by Equations (7)–(9)

according to the measurement model employed. This metric evaluates how well the model

predicts correct responses at the population level for each layer. In the case of a single latent

layer, this probability is commonly represented in the literature as θj,α = P (Rj = 1 | A = α).
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4.1 Simulation Studies for Main-Effect DeepCDMs

Throughout this section, let kd−1 and kd be the indices for the (d−1)-th and d-th layers,

respectively. For the main-effect models, the coefficients β
(d)
kd−1,kd

are specified as:

β
(d)
kd−1,0

= c
(d)
0 , β

(d)
kd−1,kd

=
c
(d)
1∑Kd

kd=1 q
(d)
kd−1,kd

, ∀ kd ∈ [Kd], d = 1, 2, 3, (27)

where K0 = J , and the constants (c
(d)
0 , c

(d)
1 ) are set to (6,−3), (3,−1.5), and (3,−1.5) for

d = 1, 2, 3, respectively. The RMSE and aBias are reported in Table 1. All indices decrease

as the sample size increases, indicating improved estimation accuracy. For each sample

size, the estimation accuracy is lower in the deeper layers than in the shallower layers, as

reflected by the values of π(d) and P
(d)
CR. This result is intuitively reasonable, as estimating

deeper layers is fundamentally more challenging due to stochastic latent layers. In addition,

all RMSE and aBias values remain reasonably small, providing empirical support for the

identifiability of the model.

Measurement Model N Layer (d)
RMSE aBias

β(d) π(d) P
(d)
CR β(d) π(d) P

(d)
CR

Main-effect

1000
1 0.408 0.0190 0.022 0.355 0.0015 0.015
2 0.189 0.0220 0.052 0.127 0.0170 0.034
3 0.459 0.0690 0.075 0.319 0.0540 0.056

Computation time (min): 4.13 Iterations: 78.8

1500
1 0.338 0.0016 0.021 0.334 0.0013 0.015
2 0.186 0.0205 0.047 0.121 0.0150 0.034
3 0.416 0.0510 0.074 0.306 0.0385 0.052

Computation time (min): 4.48 Iterations: 75.86

2000
1 0.302 0.0014 0.015 0.297 0.0011 0.013
2 0.179 0.0170 0.044 0.113 0.0138 0.030
3 0.372 0.0490 0.055 0.243 0.0385 0.042

Computation time (min): 13.67 Iterations: 71.81

Table 1: RMSE and aBias for the Main-Effect DeepCDM

To examine the recovery of the Q-matrices, we report the proportion of correctly esti-

mated rows and entries in each Q(d) for d = 1, 2, 3, as shown in Table 2. Note that these

indices are not directly comparable across layers at each sample size, as the proportions

depend on both the size of the Q-matrix and the difficulty of parameter estimation. Due

to the shrinkage ladder structure, which is supported by the identifiability conditions, the
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shallower layers contain larger Q-matrices, making their structures more challenging to re-

cover. However, these layers also benefit from more informative signals, as they are closer

to the observed data layer. In contrast, the deeper layers involve smaller Q-matrices that

are structurally easier to recover, but they suffer from less informative signals due to the

greater amount of uncertainty introduced at deeper levels. Despite these differences, when

comparing Q-matrix recovery across sample sizes, it is evident that for each layer d, the

estimation accuracy of Q(d) improves as the sample size increases.

N Proportion Layer 1 Layer 2 Layer 3

1000
PRow-wise 0.490 0.697 0.829
PEntry-wise 0.932 0.956 0.901

1500
PRow-wise 0.548 0.704 0.820
PEntry-wise 0.945 0.957 0.931

2000
PRow-wise 0.582 0.783 0.845
PEntry-wise 0.947 0.968 0.935

Table 2: Proportion of Correctly Recovered Rows (PRow-wise) and Entries (PEntry-wise) for the
Main-effect DeepCDM

4.2 Simulation Studies for All-Effect DeepCDMs

Denote the true coefficients as β
(d)
kd−1,Sd

, ∀Sd ⊆ [Kd]\∅ and β
(d)
kd−1,0

= c
(d)
0 . In the all-effect

DeepCDMs case, denote Kkd−1
=
{
kd ∈ [Kd]; q

(d)
kd−1,kd

= 1
}
, and K0 = J , and the first layer

(d = 1) is modeled using the all-effect model with the parameters given below:

β
(d)
kd−1,Sd

=


c
(d)
1

2
|Kkd−1

|

∏
l∈Sd

q
(d)
kd−1,l

= 1

0
∏

l∈Sd
q
(d)
kd−1,l

= 0

The two deeper layers (d = 2, 3) are then modeled by the main-effect model, with parameters

specified according to Equation (27). The constants (c
(d)
0 , c

(d)
1 ) are specified as (c

(1)
0 , c

(1)
1 ) =

(6,−3), (c
(2)
0 , c

(2)
1 ) = (3,−1.5), and (c

(3)
0 , c

(3)
1 ) = (3,−1.5).

The RMSE and aBias values are summarized in Table 3. As expected, all indices de-

crease with increasing sample sizes, indicating improved estimation accuracy. RMSE and

aBias values remain reasonably small across all layers, providing empirical support for the
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identifiability of the model. To evaluate the recovery of the Q-matrices, we report the pro-

portions of correctly estimated rows and entries in each Q(d) for d = 1, 2, 3, as shown in

Table 4. As in previous cases, these proportions are not directly comparable across layers, as

they are influenced by differences in Q-matrix size and estimation difficulty. Nevertheless,

for each layer d, the estimation accuracy of Q(d) improves as the sample size increases.

Measurement Model N Layer (d)
RMSE aBias

β(d) π(d) P
(d)
CR β(d) π(d) P

(d)
CR

All-effect

1000
1 0.486 0.0018 0.025 0.432 0.0015 0.020
2 0.197 0.0250 0.047 0.132 0.0198 0.037
3 0.660 0.0800 0.095 0.427 0.0600 0.070

Computation time (min): 32.00 Iterations: 75.78

1500
1 0.428 0.0015 0.021 0.386 0.0012 0.016
2 0.191 0.0216 0.044 0.128 0.0175 0.034
3 0.451 0.0700 0.073 0.326 0.0520 0.058

Computation time (min): 25.74 Iterations: 80.15

2000
1 0.389 0.0013 0.017 0.353 0.0010 0.014
2 0.144 0.0160 0.033 0.104 0.0130 0.026
3 0.300 0.0440 0.051 0.205 0.0350 0.039

Computation time (min): 63.37 Iterations: 68.76

Table 3: RMSE and aBias for the All-Effect DeepCDM

N Proportion Layer 1 Layer 2 Layer 3

1000
PRow-wise 0.808 0.662 0.745
PEntry-wise 0.986 0.942 0.867

1500
PRow-wise 0.852 0.697 0.750
PEntry-wise 0.990 0.947 0.888

2000
PRow-wise 0.878 0.757 0.885
PEntry-wise 0.993 0.969 0.954

Table 4: Proportion of Correctly Recovered Rows (PRow-wise) and Entries (PEntry-wise) for the
All-effect DeepCDM

4.3 Simulation Studies for DINA-Effect DeepCDMs

Denote the true coefficients as β
(d)
kd−1,Sd

for all Sd ⊆ [Kd] \ ∅, with β
(d)
kd−1,0

= c
(d)
0 . In DINA

DeepCDMs, the first layer (d = 1) is modeled using the DINA formulation where βkd−1,Sd
=

c
(d)
1 if Sd = Kkd−1

, and zero otherwise, with Kkd−1
defined in Section 4.2. The DINA model
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can be viewed as a special case of the all-effect model, in which non-zero coefficients are

assigned only to the interaction of all attributes required by the (d−1)-th unit in each d-th

layer model. This formulation allows the same estimation framework used for the all-effect

model to be applied to the DINA model. The two deeper layers (d = 2, 3) are modeled using

the main-effect specification, with parameters defined as in Equation (27). The constants

(c
(d)
0 , c

(d)
1 ) are specified as (6,−3), (3,−1.5), and (3,−1.5) for d = 1, 2, 3, respectively.

The RMSE and aBias results are reported in Table 5. Again, these values exhibit a clear

decreasing trend with increasing sample size, indicating improved estimation accuracy. To

assess the recovery of the Q-matrices, Table 6 presents the proportions of correctly estimated

rows and entries for each Q(d), d = 1, 2, 3. Overall, for all layers, the estimation accuracy of

Q(d) improves as the sample size increases.

Measurement Model N Layer (d)
RMSE aBias

β(d) π(d) P
(d)
CR β(d) π(d) P

(d)
CR

DINA

1000
1 0.436 0.0018 0.022 0.412 0.0015 0.017
2 0.201 0.0280 0.048 0.136 0.0190 0.037
3 0.636 0.0860 0.094 0.429 0.0650 0.070

Computation time (min): 42.92 Iterations: 83.83

1500
1 0.428 0.0015 0.021 0.389 0.0012 0.016
2 0.192 0.0220 0.044 0.128 0.0175 0.034
3 0.451 0.0701 0.073 0.326 0.0520 0.059

Computation time (min): 25.73 Iterations:80.14

2000
1 0.389 0.0013 0.017 0.353 0.0010 0.014
2 0.144 0.0162 0.033 0.120 0.0130 0.026
3 0.300 0.0437 0.051 0.210 0.0345 0.039

Computation time (min): 62.37 Iterations: 68.76

Table 5: RMSE and aBias for the DINA DeepCDM

5 Real Data Analysis

To demonstrate the applicability of the exploratory DeepCDM, we analyze student response

data from the TIMSS 2019 assessment using a two-layer DeepCDM. Specifically, we examine

responses from N = 1595 eighth-grade students in the United Arab Emirates who completed

Booklet No.1, which includes both mathematics and science items. The dataset comprises re-

sponses to J = 54 items. Responses were preprocessed into binary indicators of correctness:
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N Proportion Layer 1 Layer 2 Layer 3

1000
PRow-wise 0.709 0.689 0.758
PEntry-wise 0.957 0.951 0.871

1500
PRow-wise 0.852 0.697 0.760
PEntry-wise 0.990 0.956 0.888

2000
PRow-wise 0.878 0.757 0.885
PEntry-wise 0.993 0.969 0.954

Table 6: Proportion of Correctly Recovered Rows (PRow-wise) and Entries (PEntry-wise) for the
DINA DeepCDM

multiple-choice responses were coded as 1 if correct and 0 otherwise; constructed responses

were coded as 1 only if they received the maximum score, and 0 otherwise. According to

the TIMSS 2019 Item Information - Grade 8, items are classified into two primary domains:

mathematics (items 1–28) and science (items 29–54). Each domain further includes four

subdomains: mathematics encompasses Number, Algebra, Geometry, and Data & Proba-

bility; science includes Biology, Chemistry, Physics, and Earth Science. This hierarchical

structure aligns naturally with the two-layer CDM, where the first layer consists of K1 = 8

subdomain attributes, and the second layer consists of K2 = 2 main domain attributes. The

item-subdomain-domain assignment structure specified in the TIMSS documentation natu-

rally gives rise to a set of provisional Q matrices, which are presented in the Supplementary

Material. They indeed satisfy the strict identifiability conditions for General DeepCDMs.

To better understand the internal structure of this assessment, we applied a two-layer

exploratory DeepCDM to fit the data. Given that our primary interest lies in uncovering

the hierarchical structure of attributes rather than modeling complex attribute interactions,

we selected the main-effect model as our measurement framework. Aligning the number

of attributes with (K1, K2) = (8, 2) to those specified in the provisional Q-matrices serves

two purposes. First, it allows the exploratory approach to empirically verify the provisional

attribute-item mappings, providing evidence for the validity of the test’s original design.

Second, the exploratory model maintains sufficient flexibility to identify alternative attribute-

item structures, potentially revealing subtle item-attribute relationships not fully anticipated

during initial test construction. This dual functionality offers valuable insights for both test
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validation and future item development.

The attributes in the first layer are numerically labeled from 1 to 8, whereas those in

the second layer are labeled as A and B. After estimating the coefficient matrices, we re-

ordered the first-layer attributes to better visualize the underlying block structures. Figure 2

presents heatmaps of the estimated parameters for both layers, from which a distinct struc-

ture emerges, aligning closely with the intended test design. Specifically, Figure 2 (left)

reveals two clearly defined blocks of non-zero coefficients: the first block associates items

1–28 with Attributes 1, 4, 5, and 7, and the second block links items 29–54 to Attributes 2,

3, 6, and 8. This block structure mirrors TIMSS’s explicit distinction between mathemat-

ics and science items. Based on this clear division, we infer that Attributes 1, 4, 5, and 7

represent subdomains belonging to a common domain, while Attributes 2, 3, 6, and 8 form

subdomains within another domain. This hierarchical interpretation is further supported by

the second-layer heatmap shown in Figure 2 (right), which exhibits sparsity: Attributes 1,

4, 5, and 7 exclusively load onto Meta-Attribute B; Attributes 3, 6, and 8 exclusively load

onto Meta-Attribute A; and Attribute 2 uniquely cross-loads onto both Meta-Attributes A

and B. This inferred hierarchical structure closely matches the provisional second-layer ma-

trix Q(2), except for the cross-loading behavior of Attribute 2. Given the item content and

structure of Q(2), we conclude that Meta-Attribute A corresponds to the science domain,

and Meta-Attribute B to the mathematics domain. The cross-loading of Attribute 2 suggests

that this subdomain, despite being associated with science, may also involve mathematical

competence during the reasoning process.

Although the exploratory results align closely with the provisional test design, the es-

timated first-layer attribute structure exhibits some deviations from the provisional Q(1)-

matrix. Before examining these deviations in detail, we first evaluate the plausibility of our

exploratory findings by assessing model fit. Specifically, we compare the exploratory Deep-

CDM against a confirmatory DeepCDM that directly employs the provisional Q-matrices.

These two approaches represent fully data-driven and strictly design-driven modeling, respec-

tively. Consistent with the procedure outlined in our simulation study, model fit is quantified

using the BIC. The exploratory DeepCDM achieves an BIC of 89,656, markedly lower than

the confirmatory model’s BIC of 94,946. This improvement suggests that exploratory mod-
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Figure 2: Heatmaps of Estimated Coefficients from Exploratory DeepCDM: First Layer (left)
and Second Layer (right)

eling can be beneficial in uncovering item-attribute relationships not fully captured by the

original test design.

Next, we investigate the potential item-attribute relationships. Although the secure item

content is not publicly available, TIMSS provides detailed metadata for each item, including

descriptive labels and associated topic areas. The item labels offer concise summaries of each

item’s content focus, while the topic areas reflect broader curricular domains defined by the

TIMSS content framework. These metadata serve as valuable proxies, enabling us to infer

the cognitive processes and skills required to answer each item. The complete metadata are

provided in the Supplementary Material.

To facilitate interpretation, we focus on the five highest-loading items for each attribute,

34



Index
Extracted At-
tribute

Items Cognitive Process

1 Algebraic Fluency 5, 18, 19, 20, 21
Manipulating algebraic expres-
sions and solving equations in
symbolic and applied contexts

2
Scientific Reasoning
in Physical Con-
texts

48, 49, 50, 51, 53
Interpreting experimental condi-
tions and reasoning about physi-
cal processes

3
Scientific Classifica-
tion and Structure
Reasoning

34, 40, 43, 44, 45
Categorizing scientific entities
based on physical, chemical, or
biological properties

4
Applied Quantita-
tive Modeling

2, 7, 13, 16, 28
Applying mathematical concepts
to real-world or semi-structured
quantitative scenarios

5
Visual Quantitative
Reasoning

1, 22, 25, 26, 27

Interpreting quantitative rela-
tionships through visual formats
such as graphs, coordinates, and
shaded figures

6
Environmental Sys-
tems Reasoning

35, 36, 37, 38, 39
Understanding interactions
within environmental, planetary,
and ecological systems

7
Spatial and Mea-
surement Reasoning

6, 11, 17, 23, 10
Reasoning about shapes, spa-
tial configurations, and geometric
measurements

8
Biological and Eco-
logical Reasoning

29, 30, 31, 33, 41

Inferring biological relationships
and reasoning through cause-
effect processes in ecological sys-
tems

Table 7: Summary of Extracted Attributes, Representative Items, and Cognitive Processes

balancing between representativeness and clarity. Each item is assigned to only one at-

tribute group—specifically, the one for which it has the highest loading value among all at-

tributes—ensuring that item groupings are mutually exclusive and reflect their most salient

associations. For each attribute group, we carefully review the content of its assigned items,

identify shared cognitive processes, and distill the latent ability the attribute is likely to

capture. The distilled attribute names, along with their representative item groups and

corresponding cognitive processes, are presented in Table 7.

To clarify and illustrate our interpretive process, we present two representative examples:

Attribute 1 from the mathematics domain and Attribute 2 from the science domain. The

detailed interpretation for all eight attributes is provided in the Supplementary Material.

Attribute 1 is primarily associated with Items 5, 18, 19, 20, and 21. Based on TIMSS

metadata, these items appear to involve tasks such as expressing the area of a rectangle

algebraically, evaluating expressions by substituting values, identifying equivalent algebraic

expressions, deriving a formula for stopping distance, and solving for an unknown variable
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given the perimeter of a triangle. Although these items vary in surface content, they seem to

share a common cognitive emphasis on algebraic manipulation and symbolic reasoning. This

pattern suggests procedural fluency in algebra, which includes mastering algebraic structures,

applying operations accurately, and recognizing equivalent mathematical forms. Accordingly,

we interpret Attribute 1 as Algebraic Fluency, reflecting the ability to manipulate algebraic

expressions and apply fundamental algebraic procedures.

Attribute 2 is primarily associated with Items 48, 49, 50, 51, and 53. According to TIMSS

metadata, these items are likely to involve tasks such as explaining the behavior of gas

molecules in an expanding balloon, evaluating appropriate conditions in a heat conduction

experiment, reasoning about the effects of planetary gravity on vehicle weight, predicting the

behavior of sound in a vacuum, and interpreting evidence related to global warming. While

these items span different scientific topics, they appear to share a cognitive focus on reason-

ing through empirical or hypothetical scenarios, interpreting observations, and evaluating

experimental setups. Based on this pattern, we interpret Attribute 2 as Scientific Reasoning

in Physical Contexts, reflecting systematic reasoning about physical phenomena, empirical

data, and conditions relevant to scientific inquiry. As scientific reasoning often draws on

mathematical competence, this also supports the observed cross-loading of Attribute 2 onto

both science and mathematics domains.

It is important to emphasize that the attribute structure identified through our anal-

ysis does not represent the only possible or ideal solution, as the interpretation relies on

available metadata rather than direct access to detailed item content. Nevertheless, this

empirical analysis illustrates how test data can be examined using an exploratory approach

and demonstrates how the resulting attribute structure can be interpreted using accessible

metadata. This reflects a common practical scenario, where exploratory results may not fully

align with the original test design and detailed item content may be unavailable. By ana-

lyzing the derived results through metadata or with expert input, practitioners may uncover

findings that offer new perspectives or supplementary insights into the test design.
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6 Discussion

This paper builds a conceptual and methodological bridge between deep generative modeling

and cognitive diagnosis. By significantly generalizing the DeepCDMs proposed by Gu (2024)

to the challenging exploratory settings, we introduce a new class of models—exploratory

DeepCDMs—that retain the expressive capacity of DGMs while incorporating the structural

constraints, interpretability, and identifiability essential for diagnostic assessment. To en-

able estimation in this more complex, multi-layer setting with multiple unknown Q-matrices,

we proposed a novel layer-wise EM algorithm for regularized maximum likelihood estima-

tion. This algorithm advances the literature by offering a principled, modular framework

for learning complex hierarchical latent structures in diagnostic models. Both the algorithm

derivation and the identifiability theory of DeepCDMs support a bottom-up, layer-by-layer

estimation strategy, making the procedure not only efficient but also theoretically grounded.

A promising direction for future work is to relax the assumption of known latent dimen-

sions across layers. One approach is to incorporate layer-wise dimension selection into the

USVT-based initialization, using the largest spectral ratio of singular values, as proposed by

Lee and Gu (2025). This procedure can be applied recursively, using estimated or sampled

latent attributes from one layer as input to the next, enabling automatic, data-driven dimen-

sion selection. Alternative methods, such as the extended BIC (EBIC; Chen and Chen 2008)

and the method of sieves (Shen and Wong 1994), may also support layer-wise model selection.

It would also be valuable to extend the model to accommodate polytomous responses and

attributes (Chen and de la Torre, 2013; Gao et al., 2021). A similar layer-wise EM algorithm

could be developed by applying a one-layer EM procedure for polytomous data at each layer,

with corresponding identifiability conditions established for the between-layer Q-matrices.

Another useful extension is to develop a stochastic version of the layer-wise EM algorithm.

Such variants may offer computational advantages for large-scale, high-dimensional data and

serve as a flexible alternative when full E-step computations are costly. More broadly, this

work is motivated by the goal of integrating DGMs—and machine learning methods more

generally—into cognitive diagnostic modeling. The simulation and empirical results sug-

gest that this integration is a fruitful direction. Moving forward, exploring identifiability

37



in existing DGMs and adapting their algorithms to promote sparsity could benefit not only

psychometrics but also other domains where interpretability is crucial.
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Supplementary Material

This Supplementary Material is organized as follows. Supplement A outlines the iden-

tifiability results of DeepCDMs. Supplement B presents the sequences of regularization

parameters used in the simulation study. Supplement C presents additional information for

the real data analysis, including the provisional Q-matrices, complete metadata and detailed

interpretations of all eight extracted attributes presented in Section 5 of the main text.

A Theoretical Identifiability Conditions

This appendix outlines the identifiability results of DeepCDMs. For the technical proofs of

these theoretical results, see Gu (2024).

A.1 Sharp Strict Identifiability Result for DeepDINA

In this subsection, we summarize the sharp necessary and sufficient conditions for the

strict identifiability of the DeepDINA model, as established in prior work Gu (2024). The

parameter space for the deep-layer population proportions π(D) is defined as ∆2KD−1 ={
π
(D)
αℓ :

∑2KD

ℓ=1 π
(D)
αℓ = 1, π

(D)
αℓ > 0

}
. It is assumed that π

(D)
αℓ > 0 for each deep latent profile

αℓ ∈ {0, 1}KD—a standard condition consistent with those commonly imposed in single-layer

CDMs. We now briefly review the definition of strict identifiability relevant to this setting.

Definition 1 (Strict Identifiability). An exploratory DeepCDM is said to be strictly iden-

tifiable, if the distribution of the observed vector R in (5) uniquely determines all of the

following: all continuous parameters in the layerwise conditional distributions, the deepest

proportion parameters π(D), and all Q-matrices at different depths Q(1), . . . ,Q(D), up to

some column/row permutation.

A key assumption for DeepDINA’s identifiability is the C-R-D conditions. In the tradi-

tional DINA model with a saturated attribute framework, these conditions are necessary and

sufficient for identifiability, holding in both confirmatory (Gu and Xu, 2019) and exploratory

settings (Gu and Xu, 2021). We summarize them below.
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(C) Completeness. A Q-matrix with K columns contains an identity submatrix IK after

some row permutation. That is, the Q can be row-permuted to be Q = [IK , (Q
∗)⊤]⊤.

(R) Repeated-Measurement. Each of the K attributes is measured by at least three items.

(D) Distinctness. Assuming Condition (C) holds, after removing the identity submatrix

IK from Q, the remaining submatrix Q∗ contains K distinct column vectors.

Theorem 1 provides a sharp identifiability result for exploratory DeepDINA with arbi-

trary depth D, offering the necessary and sufficient conditions on the multiple Q-matrices.

Theorem 1 (DeepDINA). Consider a ladder-shaped exploratory DeepDINA model with D

latent layers and D between-layer Q-matrices Q(1), . . . ,Q(D). The model is strictly identifi-

able if and only if each Q(d), d = 1, . . . , D, satisfies the C-R-D conditions.

The sharp identifiability conditions in Theorem 1 impose transparent constraints on the

Q-matrices, which are also necessary and sufficient for identifying the DeepDINO model

due to the duality between DINA and DINO (Chen et al., 2015). These conditions imply

that in an identifiable DeepDINA, the layer sizes must satisfy J > K1 + ⌈log2(K1)⌉ and

Kd−1 > Kd + ⌈log2(Kd)⌉ for d = 2, . . . , D (Gu and Xu, 2021; Gu, 2024). This suggests a

progressively shrinking ladder-like sparse architecture for the latent layers as depth increases.

A.2 Strict Identifiability Result for General DeepCDMs

This subsection outlines general strict identifiability conditions for any DeepCDM, including

Hybrid DeepCDMs introduced in Section 2.2.

Theorem 2 (General DeepCDM). Consider an exploratory general DeepCDM with D latent

layers and D between-layer Q-matrices Q(1), . . . ,Q(D). Either Condition (S) or Condition

(S ∗) below is sufficient for strict identifiability of the model.

(S) Each Q(d) can be written as Q(d) = [IKd
, IKd

, IKd
, (Q(d)∗)⊤]⊤ after some column/row

permutation, where Q(d)∗ is an arbitrary (Kd−1−3Kd)×Kd matrix (potentially empty).
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(S ∗) This condition is the combination of both (S1 ∗) and (S2 ∗) below.

(S1 ∗) Each Q(d) can be written as Q(d) = [IKd
, IKd

, (Q(d)∗)⊤]⊤ after some column/row

permutation, where Q(d)∗ is an arbitrary matrix (potentially empty).

(S2 ∗) For any two different Kd-dimensional latent patterns αc, αℓ ∈ {0, 1}Kd, there

exists some j > 2Kd such that P(A(d−1)
j = 1 | A(d) = αc, Q

(d), θ(d)) ̸= P(A(d−1)
j =

1 | A(d) = αℓ, Q(d), θ(d)), where θ(d) generically denotes continuous parameters

required to fully specify the conditional distribution.

Theorem 2 is broadly applicable to any DeepCDM, regardless of the diagnostic model used

in each layer. Based on the theorem’s conditions, the layer sizes must satisfy J > 2K1 and

Kd−1 > 2Kd for d = 2, . . . , D, indicating a progressively shrinking, sparse latent structure

as depth increases.

By comparing Theorems 1 and 2, we observe that the sufficient conditions for arbitrary

DeepCDMs are stricter than those required for identifying DeepDINA. The next proposition

confirms that when a DeepCDM includes a combination of DINA layers and main-effect/all-

effect layers, the Q-matrices for the DINA layers only need to satisfy the weaker C-R-D

conditions, instead of the stronger Conditions (S) or (S∗) in Theorem 2.

Proposition 1 (Hybrid DeepCDM). Consider a Hybrid DeepCDM with D latent layers and

D between-layer Q-matrices Q(1), . . . ,Q(D). If each Q(d) satisfies the identifiability conditions

for the specific diagnostic model that A(d−1) | A(d) follows (i.e., C-R-D for DINA, (S) or

(S ∗) for main-effect or all-effect model), then the entire DeepCDM is strictly identifiable.

A.3 Generic Identifiability of Main-effect and All-effect DeepCDMs

Strict identifiability is the strongest notion of identifiability, requiring that parameters be

identifiable across the entire parameter space T . A slightly weaker notion, generic identifi-

ability (Allman et al., 2009), only requires identifiability almost everywhere in T , allowing

non-identifiability on a measure-zero subset N ⊂ T . As noted by Allman et al. (2009),
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generic identifiability is often sufficient for real data analysis and is widely useful in practice.

In what follows, we outline the conditions under which main-effect and all-effect DeepCDMs

achieve generic identifiability. We begin by defining main-effect-based DeepCDMs.

Definition 2 (Main-effect-based DeepCDMs). A DeepCDM is said to be “main-effect-

based”, if the layerwise conditional distribution can be written as:

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

}
+ · · ·

)
.

where f(·) is a link function, and the “ · · · ” refers to potentially more terms such as the

interaction-effects of the αk’s and the intercept.

Note that Main-effect-based DeepCDMs also covers All-effect DeepCDMs, because the

latter also incorporate the main effects of attributes. DeepDINA is not a main-effect-based

DeepCDM since it lacks the main-effect coefficients, like β
(d)
j,k , outlined in Definition 2. These

coefficients are key to achieving generic identifiability and allow relaxing the condition that

each Q(d) must contain a submatrix IKd
(Gu and Xu, 2020; Chen et al., 2020). Next, we

formally define and establish the generic identifiability of main-effect-based DeepCDMs.

Definition 3. Define the allowable constrained parameter space for β(d) in Definition 2

under the binary matrix Q(d) as

Ωmain(β
(d); Q(d)) = {β(d)

j,k ̸= 0 if q
(d)
j,k = 1; and β

(d)
j,k = 0 if q

(d)
j,k = 0}. (28)

The continuous parameters and the Q-matrices are said to be generically identifiable if the

set of unidentifiable continuous parameters has measure zero with respect to the Lebesgue

measure on their parameter space ∪D
d=1Ωmain(β

(d); Q(d)) ∪∆2KD−1.

Theorem 3. Consider a main-effect-based DeepCDM. Suppose each Q(d) can be written as

Q(d) = [(Q
(d)
1 )⊤, (Q

(d)
2 )⊤, (Q(d)∗)⊤]⊤ after some column/row permutation and satisfies the

following conditions. Then the main-effect-based DeepCDM is generically identifiable.
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(G1) Each Q
(d)
m (m = 1, 2) has size Kd ×Kd and takes the following form:

Q(d)
m =


1 ∗ · · · ∗
∗ 1 · · · ∗
...

...
. . .

...
∗ ∗ · · · 1

 , m = 1, 2; d = 1, . . . , D.

That is, Q
(d)
1 and Q

(d)
2 each has all the diagonal entries equal to one, whereas any

off-diagonal entry is free to be either one or zero.

(G2) The (Kd−1 − 2Kd) × Kd submatrix Q(d)∗ in Q(d), d = 1, . . . , D, satisfies that each

column contains at least one entry of “1”.

Theorem 3 relaxes the strict identifiability conditions from Theorem 2 by removing the

requirement for any Q(d) to contain an identity submatrix IKd
. Moreover, these generic

identifiability conditions suggest a shrinking latent structure as depth increases, since (G1)

and (G2) imply that J > 2K1 and Kd > 2Kd+1 for d = 1, . . . , D − 1.

B Sequences of Regularization Parameters Used in the

Simulation Study

Table B.1 presents the sequences of scaled regularization parameters N · sd used in the

simulation study across different sample sizes and layers. These sequences are applied con-

sistently across all three measurement model settings: main-effect, all-effect, and DINA. In

general, the tuning parameters are specified to decrease with increasing sample size, following

theoretical guidance for regularization parameter selection Chen et al. (2015).
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Sample size
Layer

1 2 3
1000 (0.010, 0.011, 0.012) (0.010, 0.011, 0.012) (0.015, 0.016, 0.017)
1500 (0.009, 0.010, 0.011) (0.009, 0.010, 0.011) (0.014, 0.015, 0.016)
2000 (0.008, 0.009, 0.010) (0.008, 0.009, 0.010) (0.013, 0.014, 0.015)

Table B.1: Sequences of scaled regularization parameters N ·sd used in the simulation study,
across different sample sizes and layers.

C Supplement for Data Analysis

In this appendix, we provide supplementary information for the real data analysis in Sec-

tion 5. Tables C.1 and C.2 present the provisional Q-matrices derived from the TIMSS

assessment design. Table C.3 lists metadata for each item, including descriptive labels and

associated topic areas. In addition, detailed interpretations of the eight extracted attributes

in Table 7 of the main text are provided below.
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Item ID Number Algebra Geometry Data & Prob. Biology Chemistry Physics Earth Science

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0
10 0 0 1 0 0 0 0 0
11 0 0 1 0 0 0 0 0
12 0 0 0 1 0 0 0 0
13 0 0 0 1 0 0 0 0
14 1 0 0 0 0 0 0 0
15 1 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0
17 1 0 0 0 0 0 0 0
18 0 1 0 0 0 0 0 0
19 0 1 0 0 0 0 0 0
20 0 1 0 0 0 0 0 0
21 0 1 0 0 0 0 0 0
22 0 1 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0
24 0 0 1 0 0 0 0 0
25 0 0 1 0 0 0 0 0
26 0 0 0 1 0 0 0 0
27 0 0 0 1 0 0 0 0
28 0 0 0 1 0 0 0 0
29 0 0 0 0 1 0 0 0
30 0 0 0 0 1 0 0 0
31 0 0 0 0 1 0 0 0
32 0 0 0 0 1 0 0 0
33 0 0 0 0 0 1 0 0
34 0 0 0 0 0 0 1 0
35 0 0 0 0 0 0 1 0
36 0 0 0 0 0 0 1 0
37 0 0 0 0 0 0 0 1
38 0 0 0 0 0 0 0 1
39 0 0 0 0 1 0 0 0
40 0 0 0 0 1 0 0 0
41 0 0 0 0 1 0 0 0
42 0 0 0 0 1 0 0 0
43 0 0 0 0 1 0 0 0
44 0 0 0 0 0 1 0 0
45 0 0 0 0 0 1 0 0
46 0 0 0 0 0 1 0 0
47 0 0 0 0 0 1 0 0
48 0 0 0 0 0 0 1 0
49 0 0 0 0 0 0 1 0
50 0 0 0 0 0 0 1 0
51 0 0 0 0 0 0 1 0
52 0 0 0 0 0 0 0 1
53 0 0 0 0 0 0 0 1
54 0 0 0 0 0 0 0 1

Table C.1: First-layer provisional Q-matrix Q
(1)
54×8 for item booklet No.1 in TIMSS 2019

eighth grade assessment.
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Subdomains
Main Domains

Mathematics Science

Number 1 0
Algebra 1 0
Geometry 1 0

Data and Probability 1 0
Biology 0 1

Chemistry 0 1
Physics 0 1

Earth Science 0 1

Table C.2: Second-layer Q-matrix Q
(2)
8×2 for TIMSS 2019 eighth grade assessment.
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Item ID Topic Area Label

1 Fractions and Decimals Octagon with equivalent shading

2 Integers Time when Pat finishes last lap; Percentage of laps finished

3 Integers Multiples of 3

4 Fractions and Decimals Convert decimal to a fraction

5 Expressions, Operations, and Equa-

tions

Expression for area of rectangle

6 Expressions, Operations, and Equa-

tions

Expression with exponents of y

7 Relationships and Functions Number of matches for figure 10; Rule for number of matches

8 Relationships and Functions Graph of y = 2x

9 Geometric Shapes and Measurements Rotation and reflection

10 Geometric Shapes and Measurements Surface area of the prism

11 Geometric Shapes and Measurements Value of angle x outside triangle

12 Probability Number of balls in a bag

13 Data Liv’s smartphone use; Smartphone use listening to music

14 Integers Statements for all values of integer a (DERIVED)

15 Fractions and Decimals Arrow to show 5/12 on number line

16 Fractions and Decimals Value of fraction X in square

17 Ratio, Proportion, and Percent Number of blue beads on bracelet

18 Expressions, Operations, and Equa-

tions

Value of 2(6x - 3y)

19 Expressions, Operations, and Equa-

tions

Expression equivalent to 2y + 6xy2

20 Expressions, Operations, and Equa-

tions

Formula for stopping distance

21 Expressions, Operations, and Equa-

tions

Value of x given perimeter of triangle ABC

22 Relationships and Functions Additional point on a straight line

23 Geometric Shapes and Measurements Value of angle x in a quadrilateral

24 Geometric Shapes and Measurements Methods of folding paper- height, diameter, surface area

25 Geometric Shapes and Measurements Coordinates to complete KLMN- x coordinate, - y coordinate

26 Data Mean temperature for 5 days

27 Data Best graph for town information - jobs, boys and girls, popu-

lation

28 Data Bar graph of newspaper sales

29 Cells and Their Functions Organism with cell walls

30 Ecosystems How decomposers get energy

31 Ecosystems Organism that competes with humans

32 Ecosystems Garden with bird feeder: cat+birds, cat+birds, cat+mouse

33 Properties of Matter Why Solution 2 is paler than 1
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Item ID Topic Area Label

34 Physical States and Changes in Matter Which is a physical change

35 Electricity and Magnetism Model flashlight: Bulb won’t light; 2 parallel bulbs; Compar-

ison

36 Electricity and Magnetism Two bar magnets repelling

37 Earth in the Solar System and the Uni-

verse

Planets: Shortest day length; Distance from Sun

38 Earth’s Structure and Physical Fea-

tures

Temperature outside an airplane

39 Ecosystems Relationship between insects and flowering plants

40 Cells and Their Functions Where in a cell DNA replication occurs

41 Ecosystems Increase green space as carbon dioxide increases

42 Ecosystems Why leaves’ masses decreased

43 Characteristics and Life Processes of

Organisms

Classify animals based on a single characteristic, Identify the

characteristic used to classify animals

44 Composition of Matter Location of subatomic particles

45 Composition of Matter Order elements from smallest to largest atomic num

46 Properties of Matter Acidic, basic, or neutral solution

47 Properties of Matter Mixing an acid and base solution

48 Physical States and Changes in Matter Gas molecules in an expanding balloon

49 Energy Transformation and Transfer Things Tom should do (DERIVED): same type of wax on both

rods, higher flame for the copper rod, paperclips from different

materials, etc.

50 Motion and Forces Vehicle with different weights on different planets

51 Light and Sound Cell phone in a vacuum

52 Earth’s Structure and Physical Fea-

tures

Why balloon gets bigger as it rises

53 Earth’s Processes, Cycles, and History Evidence of global warming

54 Earth’s Processes, Cycles, and History Natural resource formation shown in diagrams

Table C.3: Metadata for TIMSS Items in Booklet 1

Attribute 1 is primarily associated with Items 5, 18, 19, 20, and 21. Based on TIMSS

metadata, these items appear to involve tasks such as expressing the area of a rectangle

algebraically, evaluating expressions by substituting values, identifying equivalent algebraic

expressions, deriving a formula for stopping distance, and solving for an unknown variable

given the perimeter of a triangle. Although these items vary in content, they share a common

cognitive emphasis on algebraic manipulation and symbolic reasoning. This pattern suggests

procedural fluency in algebra, which includes mastering algebraic structures, applying oper-
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ations accurately, and recognizing equivalent mathematical forms. Accordingly, we interpret

Attribute 1 as Algebraic Fluency, reflecting the ability to manipulate algebraic expressions

and apply fundamental algebraic procedures.

Attribute 2 is primarily associated with Items 48, 49, 50, 51, and 53. According to TIMSS

metadata, these items are likely to involve tasks such as explaining the behavior of gas

molecules in an expanding balloon, evaluating appropriate conditions in a heat conduction

experiment, reasoning about the effects of planetary gravity on vehicle weight, predicting the

behavior of sound in a vacuum, and interpreting evidence related to global warming. While

these items span different scientific topics, they share a cognitive focus on reasoning through

empirical or hypothetical scenarios, interpreting observations, and evaluating experimental

setups. Based on this pattern, we interpret Attribute 2 as Scientific Reasoning in Physical

Contexts, reflecting systematic reasoning about physical phenomena, empirical data, and

conditions relevant to scientific inquiry.

Attribute 3 corresponds to Items 34, 40, 43, 44, and 45, which, based on their metadata,

appear to involve identifying physical changes, locating cellular processes, classifying or-

ganisms, recognizing subatomic structures, and ordering elements by atomic number. These

items seem to require categorization and structural understanding of scientific entities across

biology, chemistry, and physics. The common cognitive emphasis lies in classification and the

organization of scientific knowledge. Accordingly, we interpret Attribute 3 as Scientific Clas-

sification and Structure Reasoning, reflecting the ability to sort and organize domain-specific

information using scientific criteria.

Attribute 4 includes Items 2, 7, 13, 16, and 28. These items are likely to involve apply-

ing mathematical reasoning to contextualized or real-world situations, such as interpreting

percentages and time, identifying numerical patterns, analyzing device usage, working with

fractions, and interpreting a bar graph of newspaper sales. The shared emphasis appears to

be on translating semi-structured scenarios into quantitative representations. We therefore

interpret Attribute 4 as Applied Quantitative Modeling, referring to the ability to construct

and use mathematical representations to understand and reason about contextualized quan-
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titative information.

Attribute 5 is defined by Items 1, 22, 25, 26, and 27. According to metadata, these items

appear to involve reasoning with shaded figures, identifying linear patterns, completing coor-

dinate shapes, computing averages, and selecting appropriate graphs. The shared cognitive

emphasis is on interpreting visual or spatial representations to extract quantitative mean-

ing. As such, we interpret Attribute 5 as Visual Quantitative Reasoning, which highlights

the ability to engage in quantitative thinking through visual cues and data structures.

Attribute 6 consists of Items 35, 36, 37, 38, and 39. These items are associated with topics

such as electrical circuits, magnetic forces, planetary properties, atmospheric conditions,

and ecological interactions. While varying in scientific content, they collectively seem to

require reasoning about the dynamic relationships that govern natural or environmental

systems. Therefore, we interpret Attribute 6 as Environmental Systems Reasoning, reflecting

the process of analyzing complex physical and ecological interactions.

Attribute 7 corresponds to Items 6, 11, 17, 23, and 10. Based on their descriptions, these

items likely require reasoning about spatial configurations, angle relationships, proportional

reasoning, and surface area computation. The common cognitive demand appears to be spa-

tial visualization integrated with quantitative reasoning. We interpret Attribute 7 as Spatial

and Measurement Reasoning, denoting the ability to reason about shape, measurement, and

geometric relationships. We note that Item 6, while involving algebraic expressions with

exponents, may not directly reflect spatial or measurement reasoning. Its inclusion in this

group may reflect empirical overlap rather than conceptual alignment and should therefore

be interpreted with caution.

Attribute 8 is associated with Items 29, 30, 31, 33, and 41. These items involve topics

such as cellular structure, energy flow in ecosystems, species interactions, substance con-

centration, and environmental impact. While the specific topics vary, they seem to require

reasoning about biological mechanisms and ecological cause-effect patterns. Thus, we inter-

pret Attribute 8 as Biological and Ecological Reasoning, reflecting the ability to understand

and infer relationships and processes within living systems.
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